Localization of E-Governance Project

Overall Architecture

Low-Level e-platform model

March 30, 2009

Vishanta Rayamajhi
International IT Expert
UNDP Bhutan

Submitted to:

Department of Information Technology
Ministry of Information and Communication
Royal Government of Bhutan

UNDP Funded Project

Table of Contents

Introduction 4
1. The e-platform model 5
1.1 What is e-platform model? 5
1.2 Functionality 6
2. e-platform development in Zend Framework 7
2.1 What is Zend Framework? 7
3. Why Zend Framework? 9
4. Top-Level view of e-platform model Architecture 13
4.1 Architecture 13
4.2 The Core Components 15
4.3 The Zend Framework’s Controller 16
4.4 Zend_Controller Front 16
5. Details of e-platform model Architecture 18
5.1 The Model-View-Controller Design Pattern 18
6. Architecture from application perspective 29
6.1 Role 29
6.2 Resource 29
6.3 Permissions 30

Localization of E-Governance Project — Overall Architecture of e-platform model 2|Page

6.4 Authentication and Authorization 31

6.5 Approval System Process 35
. Security Implementations 37
7.1 Security considerations and implementations 37
7.2 Security issues with databases 37
7.3 Cross-Browser Compatibility 39
7.4 Recommendations 40

Localization of E-Governance Project — Overall Architecture of e-platform model 3|Page

Introduction

This report is a comprehensive architecture of the e-platform model. This gives an insight on the

core architecture and flow of the e-platform model.

The report describes the e-platform model in correlation with Zend Framework core engines,
Zend Controller, Zend Auth, Zend Acl and so on. The architecture also describes the core
elements of the database schema, namely, roles, resources and privileges of the e-platform model
as well as multi-layered verification process flow. UML and ER diagrams are also used to

describe the core elements of the e-platform model.

Security considerations and implementation is also described in detail.

Localization of E-Governance Project — Overall Architecture of e-platform model 4|Page

1. The e-platform model

1.1 What is e-platform model?

The standardized low-level e-platform model serves as a base for deploying and developing
custom e-service prototypes. It integrates several generic service modules that make the e-service
prototypes development faster and without the need to develop from scratch. The development
becomes easier and existing generic service modules or components of e-platform model is
tailored to meet specific business needs at the web application level. The e-platform, in essence,

is a building block for e-services developments to meet business processes of an organization.

The e-platform contains a set of standard components which implement concrete functionality
for utilization within e-service applications. Implementation of such application amounts to
selecting the proper components and requires minor configuration to achieve the business needs

of the e-service prototypes.

The e-platform model is designed to speed up the development of scalable and maintainable
online web applications. The model is based on enterprise application architecture, with the
intention of tailoring solutions using standard components. The solution is adaptable to specific

business needs, both in terms of functionality and integration with existing systems.

The concept of separation will be availed extensively ensuring e-platform flexibility,
maintainability and extensibility. Processes and functions will separated meaning that changes in
processes can easily be made. Business logic and design will be separated enabling the
maintainability of the e-platform to bring changes in design or business process changes to be

done independently by concerned stakeholders.

Localization of E-Governance Project — Overall Architecture of e-platform model 5|Page

1.2 Functionality of e-platform model

The framework includes a number of standard components. These components offer concrete

business level functionality which is usable at application level.

A set of chosen components are configured and combined within the framework to provide the
required functionality of the application. In this way the development effort is considerably

diminished.

As the components themselves do not change they are effectively re-used within a number of
different applications. This is known as component-based services and component / code re-
usability. This is also called SOA (Service-Oriented Architecture) and provides methods for web
applications (e-service prototypes) development and integration where applications group
functionality around business processes and package these as interoperable services. Common
service modules are User Management and Approval system. The aim is to separate functions
into distinct units or services, and developers can combine and reuse them in the production of
business applications. These services communicate with each other by passing data from one

service to another, or by coordinating an activity between two or more services.

In this way the components will be improved over several years and as such will reach a high

level of reliability, availability, maintainability and security.

Localization of E-Governance Project — Overall Architecture of e-platform model 6|Page

2. e-platform development in Zend Framework

2.1 What is Zend Framework?

Zend Framework is a simple, straightforward, open-source software framework for PHP 5
designed to eliminate the tedious details of coding and let you focus on the big picture. Its
strength is in its highly-modular MVC design, making your code more reusable and easier to

maintain.

The Zend Framework is a PHP library for building PHP web application. It provides a set of
components to enable developers to build PHP applications more easily which will be easier to

maintain and extend over the lifetime of the application.

Zend Framework was designed and built to improve developer productivity. Unlike other
frameworks that require large configuration files to work, most aspects of a Zend Framework
application can be defined at runtime using simple PHP commands. This saves developers time
because instead of complex configuration files controlling every aspect of the application,
developer only configure the parts that deviate from the norm. Zend Framework was written
entirely in PHP 5. It will not run on any server that does not have a minimum of PHP 5.1.4

installed.

MVC stands for Model View Controller. It is a design pattern. A design pattern is a code
structure that allows for common coding frameworks to be replicated quickly. One can think of a
design pattern as a skeleton or framework on which applications will be built. PHP Zend

Framework is a framework based on MV C architecture.

Localization of E-Governance Project — Overall Architecture of e-platform model 7|Page

Fig : The MVC pattern of Zend Framework

Localization of E-Governance Project — Overall Architecture of e-platform model 8|Page

3. Why Zend Framework

The Zend Framework is essentially a hybrid framework and as such can be used in a much larger
range of projects than strict “application frameworks”. While many components in Zend
Framework can be used stand-alone like a component librarys; it is, at its core an implementation

of the “Model-View-Controller” (MVC) pattern.

Zend Framework introduces a standardized set of components that allow for easy development

of web applications. These applications can be easily developed, maintained and enhanced.
The key features of the Zend Framework are:

1. Everything in the box
Modern design

Easy to learn

Full documentation

Simpler Development

A

Rapid development

3.1 Everything in the box

The Zend Framework is a comprehensive full stack framework that contains everything you need
to develop your application. This includes a robust MVC component to ensure that your website
is structured according to best practices. Accompanying the MVC component, there are
components for authentication, searching, localization, PDF creation, email and connecting to

web services, along with a few other more esoteric items.

Localization of E-Governance Project — Overall Architecture of e-platform model 9|Page

3.2 Modern design

The Zend Framework is written in object-oriented PHPS5 using the modern design techniques,
known as design patterns. Software design patterns are recognized high level solutions to design
problems and, as such, are not a specific implementation of the solution. The actual
implementation depends on the nature of the rest of the design. The Zend Framework makes use
of many design patterns and its implementation has been carefully designed to allow the

maximum flexibility for application developers without making them do too much work!

The framework recognizes the PHP way and doesn’t force you into using all the components, so
you are free to pick and choose between them. This is especially important as it allows you to
introduce specific components into an existing site. The key is that each component within the

Framework has very few dependencies on other components.

3.3 Easy to learn

Zend Framework is modular and has a design goal of simplicity which makes it easy to learn,
one step at a time. Each component doesn’t depend on lots of other components and so is easy to
study. The design of each component is such that you do not need to understand how it works in
its entirety before you can use it and benefit from it. Once you have some experience of using the
component, building up to use the more advanced features is straight-forward as it can be done in

steps. This is the key to reducing the barrier to entry for most users.

3.4 Full documentation

No matter how good the code is, lack of documentation can kill a project through lack of
adoption. The Zend Framework is aimed at developers who do not want to have to dig through

all the source code to get their job done and so the Zend Framework puts documentation on an

Localization of E-Governance Project — Overall Architecture of e-platform model 10|Page

equal footing with the code. This means that the core team will not allow new code into the

framework unless it has accompanying documentation.

There are two types of documentation supplied with the framework: API and end-user. The API
documentation is created using PHPDocumenter and is automatically generated using special
“docblock” comments in the source code. These comments are typically found just above every
class, function and member variable declaration. The key advantage of using docblocks is that
IDEs such as PHPIDE in Eclipse or Zend’s Studio are able to supply auto-completion tool tips

whilst coding and so improve developer productivity.

3.5 Simpler development

As we have noted, one of PHP’s strengths is that developing simple dynamic web pages is very
easy. This has enabled millions of people to have fantastic websites who may not have had them
otherwise. The ability of PHP programmers range from people who are beginners to
programming through to enterprise developers needing to meet their deadlines. The Zend
Framework is designed to make development simpler for every type of developer. So how does it
make development simpler? The key feature that the framework brings to the table is tested,
reliable code that does the “grunt” work of an application. This means that the code you write is
the code you need for your application. The code that does the “boring” bits is taken care of for

you and is not cluttering up your code.

3.6 Rapid Development

The Zend Framework makes it easy to get going on your web application or add new
functionality to a current website. As the framework provides many of the underlying
components of an application, you are free to concentrate on the core parts of your application,
rather than on the underlying foundation. Hence, it is easy to get started quickly on a given piece

of functionality and immediately see the results.

Localization of E-Governance Project — Overall Architecture of e-platform model I11|Page

Another way the framework speeds up development is that the default use of most components is
the common case. In other words, you don’t have to worry having to set lots of configuration

settings for each component just so that you can get started using it.

Localization of E-Governance Project — Overall Architecture of e-platform model 12|Page

4. Top-Level view of e-platform Architecture

4.1 Architecture

The e-platform model is best described as common, industry-wide, open-standards-based,

interoperable platform facilitating the reliable and pervasive availability of, access interfaces

with, and processing for, the various distributed information processing environment. It defines

various technologies required to deliver individual agencies’ and the State’s business application

systems and services to the citizens. It allows individual agencies to deploy and support effective

and efficient end-user access interfaces to business application systems, as well as providing the

processing capability to execute business application systems, while increasing the use of e-

government solutions and maintaining traditional methods of service delivery to citizens.

Platform is a complete environment that provides rich functionality by interacting with the

existing PHP in a simple and generic way. Platform is a non-intrusive extension to an existing

environment with minimal overhead that helps obtain enhanced performance and reliability.

Web
Services

B2C

Applications| (Management

Content

Int-anet

Applications

BZ2B

I

I

PHP Screipts

[

[

I

Zend Platform™

Zend Engine I & II

Linux

Solaris

B5D 05 X

Windows

System i

Fig - Platform and the PHP-enabled Enterprise

Localization of E-Governance Project — Overall Architecture of e-platform model

13|Page

Platform extends the Zend Engine with the organization's execution environment, providing the
platform on which to base the e-Platform model. Basically the inner most layer is the Hardware
and on top of which the Kernel or the operating system being stacked. The PHP layer which
stands as the backbone for Zend Framework is established on top of the Kernel. Finally the e-

platform model which has been total based on Zend Framework.

E-PLATFORM

ZEND FRAMEWORK
PHP

KERNEL

HARDWARE

Fig - Top Level view of e-platform architecture

Localization of E-Governance Project — Overall Architecture of e-platform model 14|Page

4.2 The Core Components

The core components of Zend provide a full-features Model-View-Controller (MVC) system for
building applications that separate out the view templates from the business logic and controller
files. There are three families of classes that make up the MVC system: Zend Controller
(Controller), Zend View (View) and Zend Db (Model). Figure below shows the basics of the
Zend Framework’s MVC system.

Bootstrap File: index.php
(database connection)

Controller File
(application logic)
Model File
(database query)

View Template File
(HTML)

Fig - MVC

The Zend Controller family of classes provides a front controller design which dispatches
requests to controller actions (also known as commands) so that all processing is centralized. The
controller supports plug-ins at all levels of the process and has built in flex-points to enable you

to change specific parts of the behaviour without having to do too much work.

The view template system is called Zend View which provides a PHP based template system.
This means that, unlike Smarty, all the view templates are written in PHP. Zend View provides a
helper plugin system to allow for creation of reusable display code. It is designed to allow for
overriding for specific requirements, or even replacing entirely with another template system

such as Smarty.

Localization of E-Governance Project — Overall Architecture of e-platform model 15|Page

Zend Db Table implements a table row gateway pattern to form the basis of the model within
the MVC system. The model provides the business logic for the application which is usually
database-based in a web application. Supporting Zend Db Table is Zend Db which provides
object oriented database independent access to a variety of different databases, such as MySQL,

PostgresSQL, SQL Server and Oracle.

4.3 The Zend Framework’s Controller

The Zend Framework’s front controller code is spread over a number of classes that work
together to provide a very flexible solution to the problem of routing a web request to the correct
place to do the work. Zend Controller Front is the foundation and it processes all requests

received by the application and delegates that actual work to action controllers.

4.4 Zend_Controller Front

Zend Controller Front implements a Front Controller pattern used in Model-View-Controller
(MVC) applications. Its purpose is to initialize the request environment, route the incoming
request, and then dispatch any discovered actions; it aggregates any responses and returns them

when the process is complete.

Zend Controller Front also implements the Singleton pattern, meaning only a single instance of
it may be available at any given time. This allows it to also act as a registry on which the other

objects in the dispatch process may draw.

Zend Controller Front registers a plugin broker with itself, allowing various events it triggers to
be observed by plugins. In most cases, this gives the developer the opportunity to tailor the
dispatch process to the site without the need to extend the front controller to add functionality.

Zend Controller Front is the foundation and it processes all requests received by the application

and delegates that actual work to action controllers.

Localization of E-Governance Project — Overall Architecture of e-platform model 16|Page

The Zend Controller workflow is implemented by several components. While it is not necessary
to completely understand the underpinnings of all of these components to use the system, having

a working knowledge of the process is helpful.

Zend Controller Front orchestrates the entire workflow of the Zend Controller system. It is an
interpretation of the FrontController pattern. Zend Controller Front processes all requests
received by the server and is ultimately responsible for delegating requests to ActionControllers

(Zend Controller Action).

Localization of E-Governance Project — Overall Architecture of e-platform model 17|Page

S. Details of e-platform model Architecture

5.1 The Model-View-Controller Design Pattern

The Zend Framework controller system is an implementation of the Model-View-Controller
software design pattern. A software design pattern is a standard general solution to a common
problem. This means that whilst the exact implementation will differ, the concepts used to solve
a problem using a given pattern will be the same. The MVC pattern describes a way to separate

out the key parts of an application into three main sections.

(Request from Browser)

Router

Dispatcher
Model

Controller

(Response to Bruwser)

Figure - MVC pattern diagram showing the three main sections of a web application along

View

with the dispatcher that find the correct controller to be executed in response to a request.

Localization of E-Governance Project — Overall Architecture of e-platform model 18|Page

5.1.1 The Model

The model part of the MVC pattern is all the code that works behind the scenes related to how
this particular application works. This is known as business logic. This is the code that decides
how to apply the shipping cost to an e-commerce order or the code that knows that a user has a
first name and a surname. It follows therefore that retrieving and storing data to a database is
within the model layer. In terms of the code, the Zend Framework provides the Zend Db Table
class which provides table level access to the database and allows for easily manipulating the

data used by the application.

5.1.2 The View

The view is the display logic of the application. For a web application, this is usually the HTML
code that makes up the web pages, but can include, say, XML that is used for an RSS feed. Also,
if the website allows for export in CSV format, the generation of the CSV would be part of the
view. The view files themselves are known as templates as they usually have some code that
allows for the displaying of data created by the model. It is also usual to move the more complex
template related code into functions known as View Helpers, View Helpers improve the re-
usability of the view code. By default the Zend Framework’s view class (Zend View) uses PHP
within the template files, but another template engine such as Smarty or PHPTAL may be
substituted.

5.1.3 The Controller

The controller is the rest of the code that makes up the application. For web applications, the
controller code is the code that works out what to actually run in response to the web request. For
Zend Framework applications, the controller system is based on the design pattern known as
Front Controller which uses a handler (Zend Controller Front) and action commands
(Zend Controller Action) which work together in tandem. The front controller handler accepts

all server requests and runs the correct action function within the action command. This process

Localization of E-Governance Project — Overall Architecture of e-platform model 19|Page

is known as routing and dispatching. The action class is responsible for a group of related action
functions which perform the “real” work required from the request. Within the Controller of the

Zend Framework, it is possible to have a single request result in the dispatch of multiple actions.

| preDispatch

b
¥
. Action
Dispatcher fagee. oo Controller
a
¥
postDispatch
-
Yes
Mo

Send
Response

Response
Object

Fig — Request and Response handling in the e-platform model

Localization of E-Governance Project — Overall Architecture of e-platform model 20|Page

5.1.3.1 Request

The request is encapsulated within an instance of Zend Controller Request Http which provides
access to the entire HTTP request environment. A request environment is all the variables
received by the application from outside the application along with relevant controller
parameters such as the controller and action router variables.

The HTTP request environment contains all the super globals ($§ _GET, $§ POST, § COOKIE,
$ SERVER and § ENV) along with the base path to the application. The router also places the
module, controller and action names into the request object once it has worked them out.
Zend Controller Request Http provides the function getParam() to allow the application to
collect the request variables and so the rest of the application is protected from a change in
environment. For example, a command line request environment wouldn’t contain the HTTP
specific items, but would include the command line arguments passed to the script. Thus the
code: $items = $request->getParam('items'); will work unchanged when run as a web request or

as a command line script.

In general, the request object should be treated as read only to the application as, implicitly, the

values set by the user shouldn’t be changed.

Localization of E-Governance Project — Overall Architecture of e-platform model 21|Page

(Request from Browser)

Bootstrap File: index.php
{Initialization)

Zend_Controller_Front
(Front Controller)

Zend_Controlier_Router_Rewrite

{Choosas action to run)
Concrete instance(s) of

Zend_Controller_Dispatcher Standard
(Calls action)
Zend_Db_Table (Model)
Concrele instance(s) of Creates Zend Db FRows and
Zend_Controller_Action Zend_Db_Rowsets

Uses various Zend Action Helper
classes

Zend_Controller_Request_Http

Zend_View (View)

Uses various Zend_View_Helper
classes

Zend_Controller_Response_Hitp

(Response to Browser)

Figure : MVC: the Zend Framework way

Localization of E-Governance Project — Overall Architecture of e-platform model 22|Page

5.1.3.2 Bootstrapping

Bootstrapping is the term used to describe starting the application up. With the Front Controller
pattern, this file is the only file needed in the web root directory and so is usually called
index.php. As this file is used for all page requests, it is used for setting up the application’s
environment, setting up the Zend Framework’s controller system and then running the

application itself.

Initially, the environment is set up correctly to ensure that all errors or notices are displayed.
PHP 5.1 introduced new time and date functionality that needs to know where in the world we
are. There are multiple ways to set this, but the easiest user-land method is

date default timezone set().

The Zend Framework is written with the assumption that the library directory is available on the
php_include path. There are multiple ways of doing this and the fastest for a global library is to
alter the include path setting directly in php.ini. A more portable method, especially if you use
multiple versions of the framework on one server, is to set the include path within the bootstrap.
The Zend Framework applications does not depend on any particular file, however it is useful to
have a couple of helper classes loaded early. Zend Loader::loadClass() is used “include” the
correct file for the supplied class name. The function converts the underscores in the class’s
name to directory separators and then, after error checking, includes the file. Hence the code line
Zend Loader::loadClass('Zend Controller Front'); and include once
'Zend/Controller/Front.php'; have the same end result. Zend Debug::dump() is used to output

debugging information about a variable by providing a formatted var dump() output.

The final section of the bootstrap sets up the front controller and then runs it. The front controller
class, Zend Controller Front implements the Singleton design pattern. This means that the class
definition itself ensures that there can only be one instance of the object allowed. A Singleton
design is appropriate for a front controller as it ensures that there is only ever one class that is
processing the request. One of the consequences of the Singleton design is that you cannot use

the new operator to instantiate it and must, instead, use the getlnstance() static member function.

Localization of E-Governance Project — Overall Architecture of e-platform model 23|Page

The front controller has a feature that captures all exceptions thrown by default and stores them
into the Response object that it creates. This Response object holds all information about the
response to the requested URL and for HTML applications this is the HTTP headers, the page
content and any exceptions that were thrown. The front controller automatically sends the

headers and displays the page content when it finishes processing the request.

5.1.3.3 Routing

Routing is the process of determining which controller’s action needs to be run in order to satisfy
the request. This is performed by a class that implements Zend Controller Router Interface and
the framework supplies Zend Controller Router Rewrite which will handle most routing
requirements. Routing works by taking the part of the URI after the base URL (known as the
URI endpoint) and decomposing it into separate parameters. For a standard URL such as
http://example.com/index.php?controller=news&action=list the decomposition is done by simply
reading the $ GET array and looking for the ‘controller’ and ‘action’ elements. As a modern
framework, it is expected that most applications built using the Zend Framework will use pretty
URLs of the form http://example.com/news/list. In this case, the router will use the
$ SERVER['REQUEST URI'] variable to determine the which controller and action has been

requested.

5.1.3.4 Dispatching

Dispatching is the process of actually calling the correct function in the correct class. As with
everything in the Zend Framework, the standard dispatcher provides enough functionality for
nearly every situation, but if you need something special, it is easy to write your own and fit it
into the front controller. The key things that the dispatcher controls are formatting of the
controller class name, formatting of the action function name and calling the action function

itself.

Localization of E-Governance Project — Overall Architecture of e-platform model 24|Page

Zend Controller Dispatcher Standard is where the rules concerning case are enforced, such that
the name format of the controller is always TitleCase and only contains alphabetic characters.
The dispatcher’s dispatch() method is responsible for loading the controller class file,
instantiating the class and then calling the action function within that class. Hence, if you
decided that you wanted to reorganize the structure so that each action lived in its own class

within a directory named after the controller, you would supply your own dispatcher.

Zend Controller Dispatcher Interface is used to define dispatchers. Dispatching is the process
of pulling the controller and action from the request object and mapping them to a controller
file/class and action method in the controller class. If the controller or action does not exist, it

handles determining default controllers and actions to dispatch.

The actual dispatching process consists of instantiating the controller class and calling the action
method in that class. Unlike routing, which occurs only once, dispatching occurs in a loop. If the
request object's dispatched status is reset at any point, the loop will be repeated, calling whatever
action is currently set in the request object. The first time the loop finishes with the request

object's dispatched status set (boolean true), it will finish processing.

The default dispatcher is Zend Controller Dispatcher Standard. It defines controllers as
MixedCasedClasses ending in the word Controller, and action methods as camelCasedMethods
ending in the word Action: FooController::barAction(). In this case, the controller would be

referred to as foo and the action as bar.

5.1.3.5 The Action

Zend Controller Action is an abstract class that all action controllers are derived from.
Zend_Controller Action is the base action controller component. Each controller is a single class
that extends the Zend Controller Action class and should contain one or more action methods.
The dispatcher enforces that your action controllers derive from this class to ensure that it can
expect certain methods to be available. The action contains an instance of the request for reading
parameters from and an instance of the response for writing to. The rest of the class concentrates

on ensuring that writing actions and managing changes from one action to another one are easy

Localization of E-Governance Project — Overall Architecture of e-platform model 25|Page

to do. There are accessor functions to get and set parameters, and redirection functions to redirect

to another action or another URL entirely.

Assuming that the standard dispatcher is used, the action functions are all named after the
action’s name with the word “Action” appended. You can therefore expect a controller action
class to contain functions such as indexAction(), viewAction(), editAction(), deleteAction() etc.
Each of these is discrete functions that are run in response to a specific URL. There are,
however, a number of tasks that you will want to do regardless of which action is run.
Zend Controller Action provides two levels of functionality to accommodate this requirement:
init() and pre/postdispatch(). The init() function is called whenever the controller class is
constructed. This makes it very similar to the standard constructor, except that it does not take

any parameters and does not require the parent function to be called.

preDispatch() and postDispatch() are a complementary pair of functions that are run before and
after each action function is called. For an application where only one action is run in response to
a request, there is no difference between init() and preDispatch() as each are only call once. If,
however, the first action function uses the forward() function to pass control to another action
function, then preDispatch() will be run again, but init() will not be. To illustrate this point, we
could use init() to ensure that only administrators are allowed access to any action function in the

controller and preDispatch() to set the correct view template file that will be used by the action.

The workflow of Zend_Controller is relatively simple. A request is received by Zend Controller Front,
which in turn calls Zend Controller Router Rewrite to determine which controller (and action in that
controller) to dispatch. Zend Controller Router Rewrite decomposes the URI in order to set the
controller and action names in the request. Zend Controller Front then enters a dispatch loop. It calls
Zend_Controller Dispatcher Standard, passing it the request, to dispatch to the controller and action
specified in the request (or use defaults). After the controller has finished, control returns to
Zend_Controller Front. If the controller has indicated that another controller should be dispatched by
resetting the dispatched status of the request, the loop continues and another dispatch is performed.

Otherwise, the process ends.

Localization of E-Governance Project — Overall Architecture of e-platform model 26|Page

5.1.3.6 The Response

The final link in the front controller chain is the response. For a web application
Zend_Controller Reponse Http is provided, but if you are writing a command line application,
then Zend Controller Response Client would be more appropriate. The response object is very
simple and is essentially a bucket to hold all the output until the end of the controller processing.
This can be very useful when using front controller plugins as they could alter the output of the

action before it is sent back to the client.

Zend Controller Response Http contains three types of information: header, body and
exception. In the context of the response, the headers are HTTP headers, not HTML headers.
Each header is an array containing a name along with its value and it is possible to have two
headers with the same name but different values within the response’s container. The response
also holds the HTTP response code (as defined in RFC 2616) which is sent to the client at the
end of processing. By default, this is set to 200 which mean OK. Other common response codes

are 404 (Not Found) and 302 (Found) which is used when redirecting to a new URL.

The body container within the response is used to contain everything else that needs to be sent
back to the client. For a web application this means everything you see when you view source on
a web page. If you are sending a file to a client, then the body would contain the contents of the

file.

Localization of E-Governance Project — Overall Architecture of e-platform model 27|Page

5.1.4 Front Controller Plugins

The front controller’s architecture contains a plug-in system to allow user code to be executed
automatically at certain points in the routing and dispatching process. All plug-ins are derived

from Zend Controller Plugin Abstract and there are six event methods that can be overridden:

1. routeStartup() is called just before the router is executed.

2. dispatchLoopStartup() is called just before the dispatcher starts executing.
3. preDispatch() is called before each action is executed.

4. postDispatch() is called after each action is executed.

5. dispatchLoopShutdown() is called after all actions have been dispatched.

6. routeShutdown() is called after the router has finished.

One problem with the current router is that if you specify a controller that does not exist, then an
exception is thrown. A front controller plugin is a good way to inject a solution into the routing
process and redirect to a more useful page. The Zend Framework supplies the ErrorHandler

plug-in for this purpose.

Localization of E-Governance Project — Overall Architecture of e-platform model 28 |Page

6. Architecture from application perspective

6.1 Role

A role is a responsibility that a user has within the system. A typical role would be “operator” or
“member”. This is encapsulated with Zend Acl Role which is a very simple class that just holds
the name of the role. Once a role is created, its name cannot be changed. Note also, that within
the context of the ACL(Access Control List), each role name must be unique. A given role may
have a parent which means that the new role can do everything the parent role can do. A role

may inherit from one or more roles. This is to support inheritance of rules among roles.

6.2 Resource

A resource is something that you want to protect. A typical resource in a Zend Framework
application would be a controller or action. For example you may want to protect access to the
forums module controller so that only those users belonging to the member role have access to
the controllers within it. A resource is attached to Zend Acl in a similar manner to a role using

the addResource() member function.

Creating a resource in Zend Acl is very simple. Zend Acl provides the resource,
Zend Acl Resource Interface, to facilitate creating resources in an application. A class need
only implement this interface, which consists of a single method, getResourceld(), so Zend Acl

to recognize the object as a resource.

Zend_Acl provides a tree structure to which multiple resources can be added. Since resources are
stored in such a tree structure, they can be organized from thse general (toward the tree root) to
the specific (toward the tree leaves). Queries on a specific resource will automatically search the
resource's hierarchy for rules assigned to ancestor resources, allowing for simple inheritance of

rules.

Localization of E-Governance Project — Overall Architecture of e-platform model 29|Page

user name — X
\\;—___/ resonrce id

user passwd

role id —

member_since N % / — <l
____’/7 <
w resource_id
status L permission
K —

Fig — ER diagram of ACL (user, role, resource and privilege)

6.3 Permissions

The final part of the setting up a Zend Acl object for use is telling the object which permissions
a given role has for accessing a given resources. To do this we need to look at the concept of
privileges. A privilege is the type of access required. Typically, privileges are based around the

%% ¢ 29 ¢

operations that will be performed, so have names like “view”, “create”, “update”, etc.

Zend Acl has two functions for setting permissions: allow() and deny(). We start off in state
where all roles are denied access to all resources. The allow() function then provides access to a
resource for a role and deny() and remove a subset of the allowed access for a particular case.

Inheritance also comes into play here as permissions set for a parent role will cascade to child

roles.

Localization of E-Governance Project — Overall Architecture of e-platform model 30|Page

6.4 Authentication and Authorisation

Not every application needs to identify their users, but it is a surprisingly common requirement.
Authorization is the process of providing access to a given resource, such as a web page, to an
authenticated user. That is, authentication is the process of identifying and entity, usually via a
token such as a username/password pair, but could equally be via a fingerprint. Authorization is
the process of deciding if the authenticated entity is allowed to have access to, or perform

operations on, a given resource, such as a record from a database.

As there are two separate processes required, the Zend Framework provides two separate
components: Zend Acl and Zend Auth. Zend Auth is used to identify the user and is typically
used in conjunction with Zend Session to hold that information across multiple page requests
(known as token persistence). Zend Acl is then uses the authentication token to provide access

to private information using the Role Based Access Control List system.

The process flow while visiting and logging in the e-platform model is as follows:

1. When a user visits the e-platform web site, the user is assigned with a role called ‘guest’,
which is a lowest level role in the platform

2. When user has to access some privileged resource (web page or menu item) not listed in
his defined set of privilege, the user has to login

3. After user login to the application, Role-Based ACL verifies whether the user has
privilege to access the resource (menu item)

4. User is granted access to resource if he has privilege over the resource requested, else, he
is redirected to a page stating the user ‘You are not authorized to view the page’

5. Access to non-existent resource or action throws an exception which is logged into the
application error file which can be referenced (viewed) from the e-platform model

application itself

The flowchart below depicts the same process flow as described above.

Localization of E-Governance Project — Overall Architecture of e-platform model 31|Page

Visit eplatform
application

A 4

Role of user set
to guest

A

Access Unprivileged
Resources

A 4

Direct User to Login
Screen

\ 4

Login

Auth Success,
Verity ACL
against
user’s role access
to resources?

Unauthorized User
Access Denied

Grant Access to
Resources (display page)

Access to Non-existent Resources or
privilege/Action throws an Exception
which will be logged

\ 4

Fig — Process of authentication and authorization in e-platform model

Localization of E-Governance Project — Overall Architecture of e-platform model 32|Page

o)

o3ed|¢g [opowr uropie[d-9 Jo 0ImoaIYIIy [[BI0AQ) —109(01J 9OUBUISA0N-F JO UOIIBZI[EI0"]

[Ppow wioje[d-d 9y) Jo ewdydS Iseqeie(— S

4
(0% Y HD YA SWRUonednze © |
< (E)NIANLL Puopednan - [-
— 'y SL)
{SZVauHDA SRS onedmaa da [- (S} INITIYMS Joune
(Z)deHD P 3a3s) T CAdueT
" P! b P (09D Pa(ns L1 SRR Adjua 358
51211350 _ Y]
u. HEELT G0 @ (Z1deHDuw piuonedde sl
T L (8)HYHDYA JuBWNI0P
| (ObJeHI YA e (o 4
e Hi, 030
| p (SILMI IS JoLne € (0ZJdHD A 32EquU0D (E)NIANLL ™ d !
L 1 pIuoRednaoo
_ (ZrdeHD i i (SERIHOH, Ssappe () : 26
sip @ A) E _ FYewHD Al
L a (42, d N3 snyErs P p
(SZyeeHI s wel Bomab + W11 B3P Ry ——— _ (PIdYHIH U Weg
- _ | AWILIL] 29ep wejdwos _
(£rdyHD P Bomat (SrmHIHEA (248 ua4ed _ (ZTdeHDuYA OUasnay
N omand @ _ LNITTRS i uEduwion @
sbomab ™ da SYdwHD U Pl [RAg aYuwHD =)qou
_H < _ Presa) | 'y suejdwod da ﬂ "
* 1% UoREWID U (ZTIdeHD pruonesdde (2)dwHD auoyd
! _
< _ (ShdYHIHY [aaa juased A speanadde da [| (OFJYHD e s524ppeTUasaud
(SILNITIZIS Joygne @ | (STHTHo P RAs) _ (4,5 N [2BMiuna
(PINITIRS Aq pascidde __ A moyjeaosddeda [| - EILL L
FWILILY] #Ef paac.dde J | 4 < (TT)eeHD 21da
L Loy
02,7479, d W3 sroEss ,,_ [(P LNITIIS A0yIne | (£rdHD odssed
(9T)ugHD ageaynaan | (EILNITTeS U3 wiba) _ (T10deHD P2
LxaL ssodind [| (51TdvHDdYA O passaaieise| | {4 NN 4apuat
2 _
(E1INIANLL PImUoRE20] | ,ﬂ e e e e — — +H JWILTLva Sep naboy 3sey o Ly — | (DZ)PH YA BweLIns
(EILNIANIL Pucnednaae g | FILAL R SEp WBose| (ZTdeHI U SWeLsjppy
(bydyHD pabeqa & “ W AWILILG] 92U J2gU=w (0Z T HId g SwELaI0)
(Ve HD A U2 | | ". IIIIIIIIIIIIIII < (9,8, NN s1ess (PILNITIRG P 8sn &
[ZTTdgH s DU smoy | W | (EILNIANIL Puoneas & " leyepsasn da [
|
(BrdwHD apgow < B ——————— —_——————— — _ () HA e
(2D auoyd u_m | [H (STUHDH prjasa & T H—————————— |
{0k deHD WA S529ppeTjuasaud > + _ _ (F)LNIANIL P304 € |
WS, L _ < P9Iy wssed |
(" 5,3 eBniuos ()MYLD P DowaD & z _||||.4_1||||i;_1 IIIIIIII o (3] Iums,_u- |
AVIIPC S — | (gD Sweabeys (EJLMIANIL p3)0d & | _ | (DJHYHIMYA BUIRU™ 1asn |
(TT)eeHD P 5 eHOtA B ebe {SZheHuYA SWeUT|as] & FH- % - x (RILNITTRIS P a2sn |
{4, Wl Jnna Japuab = mmam__z.,\ da (STHYHZHYA (=02 | < = stasnda [_
{ZgdvHDUYA Jueaydde = A s@aaf [eAcJdde da [_ (B LNITIS doune % |
(LY. |
{02} dgHI YA U0y uone)dde . % | (O)deHDHEA |24 | |
b ERT
(O el H et =) u. onEsdde | _ (DA Ao I_ - I
AiLaLva Bm_uuc_u_uﬂ_,n_% __ | (ST)RYHIUYA 3npow i <
(ZT)deHD pruoneadde = + S ——. + e ———
A suonednjdde da [< (BILNITIZIS priasn & b 113197 duweysauyubo|
< (BILMIAMIL 200 juRued A sbofda [- {ST)ueH e s52uppe di
i X - LN P 435T1 &
(FMNITTYS Jogine | (SETughDh SUEL2j01 {52)dHo A SWEUTUORET] 2 W P
_ - 1 -
JLLILYA PEiER SEp _ (ILNIANLL P aiod {E) LNIANIL PTuopEa0| SHIE G M
A u -
i sajosda [< A suonelo da [

(F)LNIANIL P 2|0 & —
13l bs _ (D5IYHI A, 8l 3usWna0p
t 7 {E1LNIAMLL P 3uswnaop 7 } {SZydHIHYA BT JUaLNIop

(09w HD A 2wed” Joda
(ZTdyHD pruoneagdde (EJLNIAMLL P uswnoop

(EILMIAMIL P 40da4
A syloday da [A SjUaWINIOp uonedNdde da [A sjuawrop~da [

_ <
|

oS e J|p¢ [opow wirojie[d-0 JO QINJOAIYILY [[BIOAQ) — 393(0.1d 90UBUISAON-H JO UOILZI[EI0T]

[Ppow uriope[d-3 3y Jo 3.an3dIna)s A10393.41(J - 1

SUSIRUSIESE [Je—
B|dEs [ja—
‘|
G CJe—
S1EI e [Je——
SUYIEI [J—o
]
Y- 100 AN [e
£55
BdEHC _Je—— m3Ip
o~ wuopeldI_Je—— RIEIGH [Jeq
J3|josuod
jedpy[C_Je—— uonoy gp
qp L e
o USHEINEUES [Je—
5195N [Ja—
e W{M{W{Mﬁfm—z
S g PO ST [e
n @ o SIRERE]
N SAMSIA_ Ja——
UdeIaoWap [ja— % 3
I [Je—— 5107358 Liam
TERGIEEE [Je—| SEN¥ (b gy o

158 e

WIBHEES)

6.5 Approval System Process

Issue
Certificate

Send for
Approval

Register
Application

Applicant

Operator

Reject or
Approve

Approver

<<INCLUDE>>

Verification
Process

Fig - UML Use Case Diagram for Approval System

UML Use Case Diagram is a narrative document that shows sequence of events of a user
using a system to complete a process or function. Use case is drawn as an oval that represent

the systems function. It always starts with a verb.

From the diagram above, we see the process of the approval system as follows:

An applicant registers his application. He/she fills up an application form and submits the
application along with the necessary required document. The operator receives the
applications and feeds the information into the system. The operator can edit, cancel, view
and print the application. Once the information is completely inserted into the system, the

Approver on the higher level will carry out the verification process and approve or reject

Localization of E-Governance Project - Report on System Analysis and Findings 35|Page

depending on the previous record and the documents that the applicant submitted. An
applicant can routinely track the status of the application with the Application No which is
provided by the operator during the time of registration. A complain lodging mechanism is
available in the system whereby common people can make inquiries and/or lodge complains

regarding their submitted application and/or general inquiry on the services.

Localization of E-Governance Project - Report on System Analysis and Findings 36|Page

7. Security Implementations

7.1 Security considerations and implementations

When writing the view code, the most important security issue to be aware of is Cross Site
Scripting (also known as XSS). Cross site scripting vulnerabilities occur when unexpected
HTML, CSS or Javascript is displayed by the website. Generally, this happens when a
website displays data created by a user without checking that it is safe for display. As an
example, this could happen when the text from a comment form contains HTML and is

displayed on a guestbook page “as is”.

The easiest way to preventing XSS vulnerabilities is to encode the characters that have
sepecial meaning in HTML. That is, we need to change all instances of < to <, & to &
and > to > so that the browser treats them as literals rather than HTML. Within the Zend
Framework, we use the helper function escape() to do this. Every time that you display a
PHP variable within a template file, you should use escape() unless you need it to contain
HTML in which case, you should write a sanitizing function to allow only HTML codes that

you trust.

7.2 Security issues with databases

The most common type of database security problems are known as SQL injection security

breaches. These occur when your user is able to trick your code into running a database query

that you didn’t intend to happen. Consider this code:

Sresult = $db->query ("SELECT * FROM users
WHERE name='" . $ POST['name'] . "'");

This typical code might be used to authorize a user after they have submitted a login form.
The coder has ensured that the correct superglobal, $§ POST, is used, but hasn’t checked what
it contains. Suppose that § POST['name'] contains the string “‘ OR 1 OR name =" (single

Localization of E-Governance Project - Report on System Analysis and Findings 37|Page

quote, followed by “OR 1 OR name=" followed by another single quote). This would result
in the perfectly legal SQL statement of:

SELECT * from users where name='' OR 1 OR name= "'

As you can see, the OR 1 in the SQL statement will result in all the users being returned from
the database table. With SQL injection vulnerabilities like this, it can be possible to retrieve
username and password information or to maliciously delete database rows causing your
application to stop working. As should be obvious, the way to avoid SQL injection attacks is
to ensure that the data that you are putting into the SQL statement has been escaped using the
correct functionality for your database. For MySQL, you would use the function

mysql real escape_string() and for PostgreSQL, you would use pg escape_string().

From Zend Framework perspective, the business logic and interaction with database is
carried out using Zend Db component, and hence, the member function quote() is used to
take care of this issue. The quote() function will call the correct underlying database specific
function and if there isn’t one, then it will escape the string using the correct rules for the

database involved. Usage is very easy:

$value = $db->quote("It's a kind of magic");

An alternative solution is to use parameterized queries, where variables are denoted by
placeholders and are substituted by the database engine with the correct variable. The

Zend Db provides the quotelnto() function for this. For example:

$sgl = S$db->quoteInto ('SELECT * FROM table WHERE id = ?', 1);
Sresult = S$Sdb->query ($sql) ;

Localization of E-Governance Project - Report on System Analysis and Findings 38|Page

7.3 Cross-Browser Compatibility

The e-platform model is developed to work in all the available browsers. The model
including graphics, design, layout, menu, CSS, AJAX, JavaScript and Forms working have
been tested successfully in major browser including Internet Explorer, Firefox, Google

Chrome and Opera.

Localization of E-Governance Project - Report on System Analysis and Findings 39|Page

7.4 Recommendations

It is very much recommended to host the e-services in Secured Socket Layer (SSL) for
desired data encryption to avoid potential spoofing of data traversed in a network, both LAN
and WAN.

Localization of E-Governance Project - Report on System Analysis and Findings 40|Page

