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Executive Summary
At the cutting edge of frontier technology –
DSVI – innovative product for social vulnerability estimation

DSVI is a collection of technologies to unlock the full potential of digital social vulnerability (SV) 
assessments. The Digital Social Vulnerability Index Technical Whitepaper is a product of the 
UNDP International Center for Private Sector in Development’s (ICPSD) SDG AI Lab, supported 
by the Disaster Risk Reduction and Recovery (DRT) for Building Resilience Team. The SDG AI 
Lab is a joint initiative of the UNDP Bureau for Policy and Programme Support (BPPS) teams, 
and it is hosted under UNDP ICPSD. The Lab has a mission to harness the potential of frontier 
technologies, such as artificial intelligence (AI), machine learning (ML) and geographic information 
systems (GIS) for sustainable development. The SDG AI Lab provides research, development 
and advisory services in the areas of frontier technologies and sustainable development. The 
Lab also supports UNDP’s internal capacity-strengthening efforts for the increasing demand for 
digital solutions.

The DSVI technical whitepaper explains the rationale, benefits, outcomes, methodologies and 
the relevance of the Digital Social Vulnerability Index. It can be regarded as a technical manual 
that describes the process of SV calculations with innovative methods, such as GIS and machine-
learning technologies. The paper critically evaluates the current vulnerability assessment space 
and proposes various ways for its improvement. Some suggestions include improvements to the 
calculation process of SV, the datasets, preprocessing of datasets, usage of machine learning 
to produce high-resolution maps and the implementation of online tools to display the results.

DSVI is a high-quality digital solution for vulnerability assessments to monitor and understand 
the exact location, distribution and underlying drivers of social vulnerabilities. While previous 
vulnerability measures would require conducting timely and costly surveys, the DSVI provides 
a higher resolution and improved representation of a country’s social vulnerability beyond 
administrative boundaries. Moreover, compared with previous instruments, the DSVI is the first 
tool of its kind to incorporate a much more comprehensive SV analysis by integrating numerous 
data sources and indices into one. 

Tailored to the specific needs of UNDP, government agencies and other development actors, 
DSVI can provide effective digital SV analyses with an implementation time frame of two to 
three months per country. It seeks to help UNDP national or regional offices to improve their 
understanding of local vulnerabilities, thereby facilitating the adoption of more targeted and 
coordinated interventions that build stronger community resilience. DSVI offers a set of outputs 
which help to deliver the key messages and data to its target audiences. These elements start 
with raw datasets and scientific methods for calculation and end with training sessions, maps, 
reports or digital infrastructure to visualize the findings. 

First, DSVI offers high-accuracy SV scores. SV scores are calculated by an automated data 
science pipeline which gathers high-quality and freely available raw data from USAID, the UN 
and scientific resources. Using GIS and machine learning, DSVI generates high-resolution 
vulnerability maps. These maps are a new, more technologically advanced addition to the long 
tradition of vulnerability mapping.
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The DSVI online tool is a web application. The web implementation features data layers 
that present SV (exact location points, data aggregated to administrative boundaries, high-
resolution maps); data layers that show socio-economic and biophysical properties (distance 
to critical infrastructure, biophysical and socio-economic parameters, disaster-related data like 
drought indices); survey information with filter functions; and tools for contextual spatial analysis               
(e.g. position of a group relative to a disaster).

In addition, DSVI offers users training sessions. These sessions inform and educate audiences 
on its core use and findings.

In summary, DSVI offers to:

1. 	 Make vulnerability data widely available and actionable. DSVI 
provides easy access to a series of vulnerability datasets. The web 
application uses machine learning to generate new data for any 
identified gap. DSVI offers various outputs that help organizations 
to better understand vulnerability and to visualize it together with 
the underlying drivers.

2. 	 Ways to allocate resources more equitably. With a better 
understanding of social and spatial distribution of vulnerability, 
practitioners can allocate resources more effectively and help to 
leave no one behind.

3. 	 Improve the use of SV data for long-term development planning. 
The DSVI tool improves SV knowledge by highlighting vulnerable 
areas within societies in particular and by creating an advanced tool 
that facilitates practitioners in their quest to address fundamental 
risk factors.

4. 	 Contribute better to crisis action. The SV scores provide valuable 
insights on social and environmental vulnerabilities in target 
areas. By bringing together vulnerability data in one platform, 
practitioners can produce digestible information that enhances 
the overall understanding of the underlying drivers of risk.

5. 	 With DSVI and the technical whitepaper, the SDG AI Lab also fulfils 
the technical and programmatic needs of UNDP for innovative 
technologies, such as those mentioned in the Strategic Plan 2025. 
The paper will inform stakeholders and policymakers on how they 
can integrate these new technologies into their programmes. This 
will be accomplished with an in-depth explanation of the DSVI 
methodologies, featuring high-quality visualizations and step-by-
step guidelines to recreate the results. DSVI and its outputs can 
be utilized to make more risk- informed and targeted decisions for 
vulnerable population groups. 
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1. Introduction

The introduction will cover all key concepts regarding social vulnerability, its significance for the 
United Nations and for Digital Social Vulnerability Index before moving on to the methodological 
and technical topics.

1.1 Social vulnerability concept
In recent years social vulnerability programmes and policies were of growing interest for 
the United Nations Development Programme (UNDP) and other organizations. UNDP not 
only acknowledges the importance of vulnerability measures, but also the fact that they are 
underresearched.1 Social vulnerability concepts and products support the achievement of 
the 2030 Agenda for Sustainable Development Goals, as well as the UNDP Strategic Plan                 
2022-2025. 

Vulnerability indices in several formats have been published and researched in recent years, 
such as the Multidimensional Poverty Index (MPI),2 or other vulnerability assessments specifically 
for climate change or disaster-related topics. These measures, however, do not cover all the 
dimensions of vulnerability and cannot reach the desired resolution necessary to make highly 
targeted programmatic decisions on the ground and in areas with low data coverage. 

Social vulnerability is the differential capacity of individuals or communities to cope with social 
and environmental shocks (Adger 2000; Cutter et al. 2003). This includes climate change, 
natural disasters and other societal risks. Vulnerable groups have a disproportionate risk of 
being affected and experiencing more profound consequences due to their socio-economic 
preconditions. SV assessments help to better map the interconnections between local 
conditions, social characteristics, or individual vulnerabilities and risks. 

The calculation of SV scores is a frequent practice to measure a community’s ability to respond 
to outside stressors and risks. It is an indirect way to quantify resilience. Having such an 
assessment helps to understand, prepare for and respond in a more effective manner by using 
a combination of the most appropriate tools once the risk materializes. 

Social vulnerability maps and data products are a powerful way to understand the distribution 
of vulnerable population groups in a region. They can be used to visualize their exposure to risk 
and to allow a targeted response by facilitating planning and strategic activities.

1    Policy Brief, Climate Change and Social Vulnerability, Arab Water Council, World Food Programme with Swedish International 
Development Cooperation Agency support, November 2022, https://www.undp.org/sites/g/files/zskgke326/files/2023-04/Policy_
Brief.pdf
2  UNDP and Oxford Poverty and Human Development Initiative, Global Multidimensional Poverty Index (MPI) 2022,                                            
https://hdr.undp.org/content/2022-global-multidimensional-poverty-index-mpi#/indicies/MPI
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1.2 Digital Social Vulnerability Index (DSVI)
Based on the need for effective digital tools and the multipurpose applications of social 
vulnerability indexes, the ICPSD SDG AI Lab developed a digitized approach for the Digital 
Social Vulnerability Index calculation. DSVI is in line with the UNDP strategic plan that seeks 
to develop integrated development solutions through digitalization and strategic innovation 
to alleviate poverty and inequality, strengthen resilience, promote gender equality and more. 
The approach is in accordance with the recent UNDP call for innovative digital solutions which 
brings together the scientific and UNDP internal methodologies for SV calculations. It will help 
to reduce the time and costs needed for previously used non-digital SV calculations. 

The non-digital procedure typically comes with various disadvantages: according to the UNDP 
handbook ‘Social Vulnerability Assessment Tools for Climate Change and DRR Programming’,3 
SV indexes are usually a conglomerate of primary and secondary data, akin to the surveys or 
censuses collected by private entities or public authorities. 

These datasets are often complemented with paper, web or telephone-based data inputs, 
which usually come in a myriad of different quality levels and types. These efforts need to be 
planned and executed by experts and statisticians in a very timely and cost-intensive procedure 
to ensure a standardized format and high quality. 

Other potential limitations are that the resulting SV maps usually have an aggregated format 
and not a high spatial resolution to show local changes. DSVI was designed to improve the 
existing methodology and to bring them to the next level.

1.3 Main benefits of DSVI and value proposal
DSVI utilizes the UNDP guidelines for SV calculations and uses geographic information systems 
(GIS) combined with machine learning to enhance the resolution of SV in an innovative way. 
Most functions are automated, and the results can be reflected in a web-based modern digital 
online tool. The envisioned implementation saves costs and allows faster and more reliable SV 
calculations. This is achieved with a long list of available datasets and peer-reviewed methods. 
With this strategy, we reduce the need for new surveys by using already available, geotagged 
survey data4 from online resources. We introduce automated data pre-processing pipelines 
which allow control over the workflow, yet grant the freedom to adjust the modelling parameters 
if needed. 

Next to the already mentioned operational benefits, DSVI directly impacts knowledge products 
and policy decisions. The benefits of using DSVI are reflected in the possibility of identifying  
areas of high vulnerability, of assessing their main drivers and of planning actions accordingly.          
It is a valuable means for stakeholders, policymakers and other responsible parties to target 
specific areas, to make efficient and relevant decisions with the goal of reducing social 
vulnerability and to contribute further to meaningful development efforts.

3    Krunoslav Katic, A Guide to Practitioners. Social Vulnerability Assessment Tools for Climate Change and DRR Programming, 
UNDP, September 2017. 
4    See data section for more information.
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1.4 Expected outcomes
With the introduction of DSVI, we aim to achieve a handful of improvements and outcomes which 
are core elements of the product. First, the calculation of Digital Social Vulnerability Index scores 
is conducted on three different levels of detail. The lowest level of detail is the administrative 
boundaries level, which represents social vulnerability scores aggregated to administrative 
boundaries. Secondly, based on the exact locations provided by the used geotagged datasets, 
the social vulnerability scores can be viewed at the household level. Thirdly, the high-resolution 
predictions of social vulnerability are achieved using geodatasets, coming with a pixel size of a 
few hundred meters or less and without data gaps. 

These vulnerability maps reach every border region of a country studied and can also enhance 
the understanding of the vulnerability situation in border regions, especially when conflicts in 
those regions are current ones. The results are then contextualized and visualized in a digital 
tool. This digital tool, a web application, uses modern technologies and grants users control over 
modelling parameters, variables and data layer selection, visualization and analysis. DSVI also 
provides training sessions for practitioners, policymakers and technical audiences to explain 
and discuss the results. 

2. Data and Methodology

This section gives a detailed overview of the scientific process of DSVI calculations. The 
provided methodology and examples are based on the DSVI calculations performed for Albania 
and Tajikistan.

2.1 Workflow

A high-level overview of the data processing and modelling steps is given in the following 
flowchart:

Figure 1. High-level flowchart of data science workflow
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The development process is aligned with industry standards and follows all necessary 
requirements to ensure a high-quality result. DSVI is developed by a multidisciplinary team 
composed of data scientists and technical experts. Data quality and technical processes are 
evaluated by experts and subject to constant improvement.  

The Business Understanding components were already explained in the previous section of this 
whitepaper. Data collection and processing are highly automated and standardized according 
to the available datasets per studied country. Automated scripts handle survey and spatial data 
to be transformed for modelling purposes (Data Engineering, turquoise cells). SV scores are 
calculated with domain knowledge and expert input to increase the quality of the resulting 
indices. 

The calculation follows scientifically accepted procedures and guidance from the UNDP 
handbook (Social Vulnerability, orange cell). In the next step, we predict SV with the help of 
geographical data, modern GIS and machine-learning techniques (High Resolution SV, red 
cells). The results, maps and the data can be viewed and interactively evaluated in the ‘DSVI 
online tool’ developed by the SDG AI Lab.

2.2 Data collection and data sources

DSVI needs three different data inputs in order to deliver its proposed components:

1)	 Survey data,5,6 or high-quality data, with the socio-economic dimensions of 
vulnerability. Additional survey/census data from other sources can be used if it 
contains geolocations.7

2)	 Spatial data that can be used to predict SV for areas without survey coverage.
3)	 Domain knowledge to identify the composition of variables, indicators and 

other influencing factors relevant for country specific circumstances.

2.2.1 Data collection: Survey data

We piloted DSVI using USAID’s Demographic and Health Survey (DHS) data. DHS data can be 
downloaded on their homepage after submitting a request. The DHS Programme is authorized 
to distribute unrestricted survey data files for legitimate academic research at no cost. DHS 
survey data is available for more than 90 developing and threshold countries. The datasets 
contain hundreds of variables covering dimensions of income, employment status, access to 
infrastructure, health, violence, gender equality, race, age and more. 

These variables are collected from thousands of individuals and standardized into statistical 
representative samples. DHS data is therefore well suited for the calculation of social vulnerability. 
DHS often comes with geolocations (or geotags) to individually determine the specific survey 
locations, and thus enable us to explore the certain regional dimensions of their vulnerabilities. 
If DHS data is not available for a country, it is possible to use other survey or census sources to 
calculate SV, with the condition that the used survey contains geotagged8 samples. 

5    United States Agency for International Development (USAID, Demographic and Health Surveys Program, https://dhsprogram.com/
6    Or any other geotagged, suitable survey information available for the region / country of interest.
7    Geolocations: Precisely defined locations of surveys taken, i.e. described with geographical coordinates (latitude, longitude).
8    Geotagged surveys contain information on where exactly one or multiple interviews were conducted.
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For instance, this will most likely become possible with the newest iteration of Multiple Indicator 
Cluster Surveys (MICS), starting in 2023.9 Other survey data can also be used to complement 
the calculation and help to contextualize the findings. Examples for this may be the ‘Listening to 
Tajikistan’ initiative by the World Bank,10 or the Household Budget Survey11 by Eurostat. However, 
these surveys may not come with the necessary geographical resolution to fully support DSVI 
requirements.

Table 1 provides an example of the characteristics of a standard DHS survey and their 
corresponding socio-economic dimensions:

Table 1: Standard DHS survey characteristics (Subset)

Social Health Economy Infrastructure

Age
Gender
Ethnicity
Migration
Early childhood - 
Education
…

Health insurance
Blood pressure
Tobacco use
Tuberculosis
Vaccinations
Alcohol use
Disabilities
…

Income
Working - 
Environment
Unemployment
Access to banking
…

Travel times to water
Internet access
Building materials
Radio / Television
Transportation
Urban / Rural
Cooking fuel
…

Figure 2 shows the absolute number of DHS survey points per commune/jamoats (Level 3 
districts) in Albania (left) and Tajikistan (right). The communes/jamoats where no surveys have 
been conducted are greyed out. Analogously, these regions are very sparsely populated. The 
DHS dataset used in this analysis contains 715 survey points and a total of 15,000 interviewed 
individuals in Albania and 366 survey points/5,000 individuals in Tajikistan.

Figure 2. Number of DHS clusters per administrative unit in Albania (left) and Tajikistan (right)

9    UNICEF Multiple Indicator Cluster Surveys (MICS), The MICS GIS initiative: harnessing the power of geolocation data, 29 June 
2022, https://mics.unicef.org/news_entries/216/the-mics-gis-initiative
10  World Bank, Listening to Tajikistan - Household Survey: Background, Implementation, and Methods, November 2017,                          
https://documents.worldbank.org/en/publication/documents-reports/documentdetail/624621538136672723/listening-to-tajiki-
stan-household-survey-background-implementation-and-methods
11    Eurostat, Household Budget Surveys – Overview, https://ec.europa.eu/eurostat/web/household-budget-surveys

The designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever on the part of the Secretariat of the 
United Nations or UNDP concerning the legal status of any country, territory, city or area or its authorities, or concerning the delimitation of its frontiers or boundaries.

https://documents.worldbank.org/en/publication/documents-reports/documentdetail/624621538136672723/listening-to-tajikistan-household-survey-background-implementation-and-methods
https://documents.worldbank.org/en/publication/documents-reports/documentdetail/624621538136672723/listening-to-tajikistan-household-survey-background-implementation-and-methods
https://ec.europa.eu/eurostat/web/household-budget-surveys
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The optimal datasets for DSVI are ‘DHS Standard Surveys’ with geotagged survey clusters 
(more information in Table 2). A full list of available datasets for DSVI can be found in the Annex 
of this technical whitepaper.

Table 2. Subset of available geotagged DHS datasets for DSVI

Country DHS Type Year(s)** Region

Tajikistan Standard  2017 Central Asia

Albania Standard  2018 Europe; Balkans

Kenya MIS; MIS; Standard  2020; 2015; 2014 East-Africa

Ethiopia Interim***; Standard 2019; 2016; 2011 East-Africa

Kyrgyz Republic Standard 2012 Central Asia

Armenia Standard 2015-2016 Asia

Jordan Standard 2018 Asia

Rwanda Standard 2020 Africa

Cameroon Standard 2018 Africa

Tanzania Standard 2016 Africa

Zambia Standard 2018 Africa

 Standard: Used for default implementation of DSVI
* Malaria-Indicator-Survey: https://dhsprogram.com/Methodology/Survey-Types/MIS.cfm
** https://dhsprogram.com/data/available-datasets.cfm
*** This is a mini-DHS

Green colour: A DSVI was produced for this country

2.2.2 Data collection: Spatial data

We collect and create high-quality spatial data to find the connections between them and the 
already-calculated SV scores. This technique allows us to predict social vulnerability on a country-
wide scale, without having holes in the image we produce. Examples of such predictions will be 
presented in Chapter 3 ‘High-resolution social vulnerability’. Chi et al. (2022) used a similar set 
of geospatial variables for their prediction of the ‘Relative Wealth Index’,12 a metric calculation 
based on similar statistical assumptions and the same DHS datasets as DSVI.

These variables for example can be ‘distance to health care’, ‘distance to roads’ or be biophysical, 
such as ‘elevation above sea level’, or socio-economic, such as ‘light emission at night’, or ‘gross 
domestic product (GDP)’. These variables are broadly available for most countries in focus, but 
datasets which have been derived and processed for the calculations. 

The selected datasets for DSVI represent all possible dimensions relevant for human 
development, but also many potentially relevant biophysical variables. This list is non-exhaustive 
and cannot be applied to every country exactly, but is a good starting point for the modelling 
and predicting of social vulnerability scores.

12    USAID, DHS Program, https://dhsprogram.com/topics/wealth-index/

https://dhsprogram.com/Methodology/Survey-Types/MIS.cfm
https://dhsprogram.com/data/available-datasets.cfm
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Table 3. Available geospatial datasets for high-resolution SV mapping (2022)

Variable Name Year Source(s) Resolution

Nightlight Intensity 2022
NASA / NOAA 

500m
NASA

Proximity to national borders 2018 ESRI <100m *

Proximity to protected areas 2021 protectedplanet.net <100m *

Proximity to health care facilities 2022 OpenStreetMap.org / Humdata.org <100m *

Proximity to financial institutions 2022 OpenStreetMap.org / Humdata.org <100m *

Drive time to financial institutions** 2022
OpenStreetMap.org / Humdata.org

<100m *
QNEAT3, University of Vienna

Drive time to education facilities** 2022
OpenStreetMap.org / Humdata.org

<100m *
QNEAT3, University of Vienna

Drive time to health care facilities** 2022
OpenStreetMap.org / Humdata.org

<100m *
QNEAT3, University of Vienna

Proximity to water 2022 GSHGG <100m *

Population density 2020 NASA / University of Columbia 1 km

Temperature 2018 wordclim.org 1 km

Precipitation 2022
University of California, 
Santa Barbara 
Chelsa Climate

500m

Urban / Rural 2016 European Commission / JRC13 1 km

Vegetation indices 2022
NASA USGS

500mEuropean Commission / 
Copernicus Programme

Slope 2000
Calculated with 

500m
Elevation Data

Elevation 2000 NASA / SRTM 30m

1. Wealth (LitPop) 
2. Relative wealth** 2019 ETH Zürich 

Facebook 30m

Global Human Footprint 2004 NASA / University of Columbia 500m

Purchasing Power Parity (PPP) 2005 Yale University 1 km

Cell towers 2022 OpenCellID <100m *

Land use class 2021 European Commission / 
Copernicus Programme 300m

* Resolution is flexible: grid size can be chosen 

** Calculated with QNEAT3 (https://root676.github.io/)

Figure 3 shows one of the derived input maps for our DSVI calculations: Drive time to a health 
facility. The input datasets are road networks obtained from OpenStreetMap   (grey lines in the 
image), health facilities (hospitals, doctors) from various sources (including OpenStreetMap) and 
coloured drive time values calculated with the QGIS Network Analysis Toolbox 3 (QNEAT3).14

13    Martino Pesaresi and Sergio Freire, GHS-SMOD R2016A - GHS settlement grid, following the REGIO model 2014 in application 
to GHSL Landsat and CIESIN GPW v4-multitemporal (1975-1990-2000-2015) - OBSOLETE RELEASE. European Commission, Joint 
Research Centre, 2016 [Dataset] PID, http://data.europa.eu/89h/jrc-ghsl-ghs_smod_pop_globe_r2016a
14    Clemens Raffler, About QNEAT3, https://root676.github.io/

https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
https://ladsweb.modaps.eosdis.nasa.gov/
https://www.arcgis.com/home/item.html?id=3e650cfe52b84bffacb86d028f1f0514
https://www.protectedplanet.net/en/thematic-areas/wdpa
https://www.openstreetmap.org/
https://data.humdata.org/
https://www.openstreetmap.org/
https://data.humdata.org/
https://www.openstreetmap.org/
https://data.humdata.org/
https://root676.github.io/
https://www.openstreetmap.org/
https://data.humdata.org/
https://root676.github.io/
https://www.openstreetmap.org/
https://data.humdata.org/
https://root676.github.io/
http://www.soest.hawaii.edu/pwessel/gshhg/
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://www.worldclim.org/data/index.html
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://chelsa-climate.org/downloads/
https://data.jrc.ec.europa.eu/dataset/jrc-ghsl-ghs_smod_pop_globe_r2016a
https://lpdaac.usgs.gov/product_search/?query=evi&view=cards&sort=title
https://land.copernicus.eu/global/products/ndvi
https://land.copernicus.eu/global/products/ndvi
https://data.nasa.gov/dataset/NASADEM-Merged-DEM-Global-1-arc-second-V001/dqg3-mwid
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-non
https://www.research-collection.ethz.ch/handle/20.500.11850/331316
https://dataforgood.facebook.com/dfg/tools/relative-wealth-index
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://gecon.yale.edu/
https://opencellid.org/downloads.php
https://land.copernicus.eu/global/products/lc
https://root676.github.io/
https://root676.github.io/
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Figure 3. Drive time to nearest health facility in Tajikistan 

This drive time map highlights the access to health facilities for a person in Tajikistan. It is one of 
the indicators relevant to an individual’s vulnerability (Cutter et al. 2003). 

2.2.3 Domain/Expert knowledge

Social vulnerability is a contextual metric that requires expert inputs for weighting. For every 
country studied, domain knowledge of the specific circumstances in that country must be 
considered. For instance, the influence of humanitarian indicators, such as the average age of 
household heads or gender-related indicators, can be interpreted in different ways and thus 
lead to different conclusions for a region or country. To improve results, it is advised to consult 
experts from the targeted country and discuss the specific weights of the SV indicators. 

For DSVI, we developed a methodology to conduct such expert input consultations. The first 
step is to gather all potentially relevant indicators available for the country of interest. The next 
step is to group questionable indicators and let an expert decide whether they play a significant 
role for social vulnerability in the country. The expert can also decide whether the cardinal 
direction of that indicator is positive or negative. Next, encoded variables need to be assessed 
and ranked by the expert. 

One example of such a variable can be the question what type of cooking fuel a family is using. 
The expert needs to rank the relative importance and benefits of different types of cooking 
fuel and establish a narrative where, for example, ‘wood’ is considered worse than ‘gas’. These 
values can be newly encoded to a range of 1 (‘better’) to 5 (‘worse’), or to a similar value scale. 

The designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever on the part of the Secretariat of the 
United Nations or UNDP concerning the legal status of any country, territory, city or area or its authorities, or concerning the delimitation of its frontiers or boundaries.
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2.3 Data processing for survey data
Data processing is an important step to transform the raw datasets and make them suitable 
for analysis. The data processing steps for survey data are mostly conducted with the help of 
Python,15 Jupyter Notebooks16 and spreadsheet softwares, such as Microsoft Excel.17

Explorative Data Analysis (EDA): Accuracy verification and outlier detection of the dataset is 
done using descriptive statistics (i.e. min/max, mean, standard deviation). Missing values can 
be replaced by substituting the variable’s mean value for each enumeration unit. The statistical 
procedure will not run properly with missing values. Census units with population values of zero 
should be omitted. Generating correlation matrices are useful to eliminate intercorrelation. 

Encoding: Some variables, such as ‘Housing Materials’, are coded numerically, but represent a 
categorical value (e.g. 35 may mean ‘concrete’ and 47 may mean ‘wood’) and therefore are of a 
nominal (or ordinal) nature. Most statistical procedures cannot make meaningful computations 
based on nominal variables. These variables have to be ‘ranked’ by an expert to conform to an 
ordinal scale. If, for example, 0 means ‘bad’ and 10 means ‘good’, a resilience-based ranking 
approach could be applied for nominal variables, such as ‘Housing Materials’. We transformed 
all nominal variables according to fixed rules and ranked them. 

Grouping/Aggregation: DHS datasets for spatial analysis must be downloaded with the 
corresponding geotagged clusters. Household questionnaires are recorded on a per person 
and per household basis. This means that, per interviewed household, multiple entries in the 
same cluster ID can be found. Aggregation requires some type of summary statistics of the 
involved variables. For example, if a data frame with 5,000 rows is condensed to 500 clusters, 
10 row entries per cluster need to be aggregated. 

Common operations are to compute the arithmetic mean, but for some variables, other 
aggregation strategies need to be used. For example, for categorical variables, the modus can 
be useful to represent the general state of the cluster. DHS survey data can contain thousands 
of columns with NA values (‘Not Available’) which need to be filtered out. In Albania’s case for 
instance, the filtering reduced the total amount of 19,724 columns to 2,644 after removing NAs.

Data Transformation: We use two different strategies to transform the input data for better 
scaling: z-score standardization and normalization. Standardization (or z-score normalization) is 
the process of rescaling the features so that they have the properties of a Gaussian distribution. 

This generates variables with a mean of 0 and a standard deviation of 1.
				                        (xi – µ)
				    xstandardized = 
					                σ

Where xstandardized is the transformed variable (also sometimes called z-score), x is the value of 
instance i and µ is the population arithmetic mean and σ the root of the standard deviation s.

Normalization: We scale variables to a range of 0-1 in order to preserve relative distances 
between values and to make the data ready for further analysis.

 	    xi – xmin
        

xnorm =  
	   xmax –  xmin

15    See https://www.python.org/
16    See https://jupyter.org/
17    See https://www.microsoft.com/en-us/microsoft-365/excel



18 Digital Social Vulnerability Index Technical Whitepaper

2.4 Data processing for geographical data
The spatial data for the high-resolution prediction come in different formats and need to be 
adjusted for further use. We use the industry standard procedures to achieve a standardized, 
high-quality database for our calculations. In our data collection phase, we obtain mainly raster 
data18 but also vector data,19 from the sources listed in Table 3. Every vector dataset needs to be 
statistically ‘aggregated’ and transformed into a raster file with the same cell size as the largest 
available raster file from the other data sources. 

For example, we transform the road network in a country into a ‘road density’ (per km²) map. 
This needs to be done, because all datasets for the high-resolution modelling phase need to be 
in the same format. Other variables, such as slope, elevation, climate, might come in different 
geographical projections, tile sizes and need to be resampled, reprojected, or cropped in order 
to fit the area of interest. Lastly, each pixel of a raster image needs to be extracted/sampled 
together with the previously aggregated survey data into data frames or matrixes.

Distance maps are derived by applying techniques, such as ‘Euclidian distance’, to generate a 
distance matrix. Such distances could be main roads, hospitals, critical infrastructure, such as 
markets or ATMs. Other interesting distance values can be related to hazard risks: if a hazard 
risk area is known, the distance to that area might be considered as a ‘good’ or positive indicator 
for lesser vulnerability. 

Euclidian distance calculation: 

D(p,q) = √ (p1– q1 )
2 + (q2 – p2 )

2

Where d(p,q) is the distance between two points in space and qi and pi are two points in two-
dimensional space.

Drive distance to critical infrastructure: We used the freely available QGIS tool ‘QNEAT3 – QGIS 
Network Analysis Tool’ and produced driving distance maps to ‘health locations’, ‘educational 
locations’ and ‘financial institutions’.

Only if all the information is united into a single data frame can a model be built that would 
obtain high-resolution SV maps. 

2.5 Calculating social vulnerability
After all data collection and pre-processing steps, the datasets are ready for the final two 
main steps: First, based on the geotagged survey data points, the social vulnerability index is 
calculated by using a statistical procedure called Principal Component Analysis (PCA), and with 
the help of field experts. Field experts are practitioners, consultants or specialists, who possess 
profound insights into the humanitarian situation and development context of the country.

18    See https://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/what-is-raster-data.htm
19    See https://spatialvision.com.au/blog-raster-and-vector-data-in-gis/
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2.5.1 Literature review and process overview

Social vulnerability calculations are used in many scientific publications and with different 
regional and contextual focus, or specifically for a type of disaster/shock. Cutter et al. (2003) 
established the theoretical backgrounds to understand modern vulnerability analysis. According 
to them, some major factors influence vulnerability: lack of access to resources, limited access to 
political power and representation and lack of social capital and available infrastructure (Cutter 
2001; Tierney et al. 2001; Blaikie et al. 1994). 

With this picture in mind, Cutter et al. (2003) identified 250 potentially relevant variables for 
households in the United States in 3,141 counties. They used multicollinearity analysis to create 
a smaller subset of 85 variables. After this, all variables were normalized (scaled) and added to 
the principal component analysis. The results were examined and studied to find the potential 
correlation between SV scores and disaster declarations per county. However, the results 
yielded only a very weak correlation score of -0.099. In recent years, authors developed the 
method further to include the missing biophysical components of previous studies.  

Willis and Fitton (2016) reviewed social vulnerability assessments comparing three different 
methods for a flood prone catchment in the UK. One of the goals of this study was to fit the 
concept into the conceptual frameworks of disaster risk reduction (DRR) and to use social 
vulnerability as a tool to identify, assess and monitor disaster risks and enhance early warning. 
The analysis was conducted on a district level, similar to Cutter et al. (2003). 

De Loyola Hummell et al. (2016) looked into the case of Brazil and concluded that vulnerability 
analysis is essential in understanding how distinct social groups are differently impacted by 
natural disasters. They used a slightly updated version of the original technique by Cutter et al. 
(2003) and obtained 45 city-level indicators which were reduced by the PCA to 10 components 
that explained about 67 percent of the total variance. 

In their analysis, they were able to categorize these components with some of the commonly 
understood drivers for vulnerability, but with a context-specific viewpoint. These included 
poverty, urban/rural development, migration, special needs population, racial diversity, race, 
population density, lack of public employment, tourism-based economy and extractive industry. 
What these and other publications have in common is the usage of PCA and census/survey 
datasets derived for district-level resolutions. 

Most authors use an additive model to sum up components and loadings into a composite 
vulnerability score. Cardinality assessments are always done with the help of literature research, 
or of field experts, for the studied region. Approaches to validate the existing scores are limited, 
such as in Willis and Fitton (2016), where the calculated scores were compared with the previous 
scores generated with the methods of Cutter et al. (2003), or Rygel et al. (2006). 

We summarized some of the most common techniques to calculate SV for different scopes and 
studies, as outlined in Table 4:
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Table 4. Proposed main steps in selected publications to calculate SV

Article Steps to compute SV

Cutter et al. 
(2003)

1.  Variable collection
2. Multicollinearity test
3. Normalization of data (to percentages, per capita, or density functions)
4. Factor analysis (PCA)
5. Scale factors
6. Sum factors
7.  Map scores based on SD from the mean into 5 categories ranging from -1 to 1

De Loyola 
Hummel  
et al. (2016)

1.  Variable collection
2. Normalization of data (to percentages, per capita, or density functions)
3. Multicollinearity test
4. Variables standardization
5. Factor analysis (PCA) + varimax rotation + Kaiser criterion
6. Loading interpretation according to the most relevant (|x| > 0.5), applying positive 

or negative signs or absolute values according to the variable expected impact
7.  Compute SV by summing the factors
8. Map scores based on SD from the mean into 5 categories ranging from -1.5 to 1.5

Guillard-
Goncalves 
et al. (2015)

1.  Variable collection
2. Normalization of data (to percentages, per capita, or density functions)
3. Correlation analysis
4. Variables standardization
5. Factor analysis (PCA) + varimax rotation + Kaiser criterion
6. Loading interpretation according to the most relevant (|x| > 0.5), applying positive 

or negative signs or absolute values according to the expected impact
7.  Compute SV by summing the factors
8. Map scores based on standard deviations from the mean into 5 categories

Rufat et al.  
(2019)

1.  Variable collection
2. Normalization of data (to percentages, per capita, or density functions)
3. Factor analysis (PCA) + varimax rotation + Kaiser criterion
4. Loading interpretations according to the most relevant (|x| > 0.5), applying positive 

or negative signs according to the expected impact
5. Compute SV by summing the factors

SDG AI Lab 
2022

1.  Variable collection
2. Normalization of data (to percentages, per capita, or density functions)
3. Pre subset of relevant contextual indicators for country of interest (with field 

experts)
4. Factor analysis (PCA) + varimax rotation + Kaiser criterion
5. Loading interpretations according to the most relevant (|x| > 0.7 or 0.5), applying 

positive or negative signs according to the expected impact
6. Compute SV by summing the highly loaded variables of each component
7.  Map based on transformation of SV to a range of 0-1, where 0 is low vulnerability 

and 1 is high

Many of the proposed techniques are very similar to each other. The SDG AI Lab took another 
step and combined some of the best practices. For instance, we integrated the field experts 
in the ‘Indicator selection process’ to be able to adjust the weights of certain vulnerability 
indicators for our final score. This increased our accuracies when predicting social vulnerability 
with geodata in our tests. 
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2.5.2 SV calculation: Indicator selection and cardinality assertion

We followed the suggestions from the literature on indicator selection as close as possible. 
DHS captures many of the important dimensions of social vulnerability well, but may have some 
weaknesses in others. The indicators can generally be grouped into categories and are shown 
in Table 5 below:

Table 5. Indicator list for SV computations*

Indicator Group SV Indicator

Socio-economic

GDP per capita
Average monthly salary
Unemployment level
Number of socially dependent individuals/citizen
Occupation (profession and managerial level)
Occupation – open space (e.g. agriculture, construction)
Economic sector (e.g. resource extraction)

Demographics

Age (proportion of youth and elderly population)
Gender (female)
Education
Special needs/disability population
Vulnerable minorities
Immigrants
Rapid population growth

Family structure
Single-parent households
Single-member households
Large families

Medical services
Number of medical personnel per capita
Number of hospitals per capita
Average distance from nearest hospital

Urban

Percentage of urban population
Quality of infrastructure
Age of infrastructure
Average property value

Built environmental
vulnerability

Population density
Quality of infrastructure
Age of infrastructure
Average property value

Social capital

Sense of community
Attachment to a place
Perceived level of social support
Civic participation

* Here indicators have been selected to produce a good representation and to help identify a strong selection for analysis.
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However, it should be noted that the actual influence is context-dependent, i.e. it should be 
assessed in every individual study. Additionally, the list should not be taken as an exhaustive list 
of all possible indicators, but merely as one with examples intended to improve understanding 
of the matter. 

Table 6. Asserted cardinality of strongly loaded variables (Component 1-7), Albania

Index Variable name
Component

Loading*
Asserted 

Cardinality**

1 Main wall material 0.56 increasing

2 Number of household members 0.70 increasing

3 Number of eligible women 0.60 increasing

4 Household has telephone (or similar) 0.56 decreasing

5 Frequency of reading newspaper 0.63 decreasing

6 Has an account in a bank 0.65 decreasing

7 Wealth index combined 0.62 decreasing

8 Smokes cigarettes 0.62 increasing

* absolute value; 

** increasing: supposedly increases vulnerability, decreasing: supposedly decreases vulnerability

 
Table 6 shows some examples of variable loadings and the asserted cardinality. For this 
assertion, the expert working on the topic needs to know the positive or negative expression for 
each variable on social vulnerability represented. For instance, ‘Main wall material’ represents 
the type of material from which house walls are constructed. If the variable is coded in a way that 
higher numbers mean ‘worse materials’, then we can assert that higher average scores must be 
associated with higher vulnerability scores in general. It is important to note that variables must 
be inspected one by one to ensure the correct cardinality for the context of the vulnerability 
dimensions of that country.

2.5.3 Social vulnerability: Calculation details

This section explains the details of the steps mentioned in Table 4 to calculate SV. As previously 
indicated, our calculation of SV is done by combining the evaluation efforts of Spielman et al. 
(2019) and the generalized recipe of the Institute of Hazard and Vulnerability at the University 
of South Carolina. For our purposes, the SDG AI Lab has made alterations to the processes 
mentioned by the authors.

Spielman et al. (2019) describe social vulnerability as a ‘latent’ variable since it is not directly 
observable but is characteristic to individuals or environments, further implying that statistical 
methods are required for indirect measurements. The statistical procedure used to calculate 
the SV in this paper is PCA. The PCA is a widely used method for finding patterns in data and 
enables reducing the data dimensionality, minimizing information loss while still preserving the 
high variance. 
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PCA was also first used by Cutter et al. (2003), who performed the first in-depth analysis of 
social vulnerability in the United States. Spielman et al. (2019) improved this methodology 
and evaluated the construction process for SV further. In the PCA we find new uncorrelated 
variables called components, representing the linear combination of the original data. The 
general workflow consists of standardizing the original data, then calculating the covariance 
matrix and subsequently eigenvectors and eigenvalues (Jolliffe and Cadima 2016). 

	 ∑i
n(xi – x̅)(yi – y̅)

cov(x,y) = 
	         n – 1

Where xi is data value of the first variable x, yi is data value of the second variable y, x̅  y̅, are 
their mean values respectively, and n is the number of data values. Covariance describes the 
joint variation between two variables. It is an extended concept of the simple variance that only 
measures the distribution and spread of a one-dimensional dataset. Covariance matrixes are 
used in PCA to discover similarities between variables and group them. The strength of this 
relationship can also be used as an indicator and selection threshold for relevant variables in 
the later analysis.

Furthermore, the analysis of component loadings (as described subsequently) are of special 
interest for SV construction. Component loadings show how strong each input variable                      
(SV relevant indicator) is correlated with the resulting component. 

PCj = wij Xj + wi+1j+1 Xj+1 + ... + wi+nj+n Xj+n

Where Xj represent original values of variables and wij represent elements of eigenvectors, also 
called component loadings.

The mentioned algorithms and steps in the list below are partially derived from Spielman et al. 
(2019) and the Institute of Hazard and Vulnerability, University of South Carolina,  and adapted 
to our needs:

Principal Component Analysis: PCA20, 21 uses a varimax rotation (100 iterations) and Kaiser 
criterion (Braeken and Assen 2006) with 100 iterations for component selection. A varimax 
rotation reduces the tendency for a variable to load highly on more than one component. An 
overview of the total explained variance per component can be deducted by the examination 
of an explained variance plot. From Figure 4. Scree plot for PCA for Tajikistan, it is evident that 
after the 7th component, the explained variance remains almost constant, and that the first                         
7 components already explained most of the total variance.

20    Lindsey Smith, A tutorial on Principal Components Analysis, 26 February 2002, http://www.iro.umontreal.ca/~pift6080/H09/
documents/papers/pca_tutorial.pdf
21     Ian T. Jolliffe and Jorge Cadima, Principal component analysis: a review and recent developments, Royal Society Publishing,        
13 April 2016, https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0202

http://www.iro.umontreal.ca/~pift6080/H09/documents/papers/pca_tutorial.pdf
http://www.iro.umontreal.ca/~pift6080/H09/documents/papers/pca_tutorial.pdf
https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0202 
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Figure 4. Scree plot for PCA for Tajikistan

Component examination: The broad representation and influence on (i.e. increase or decrease) 
social vulnerability for each component is determined by scrutinizing the loadings for each 
variable in each component. We also perform so-called ‘component naming’ which is helpful 
to group components into SV relevant classes. This is performed based on the most relevant 
variables of that component and the strength of their loadings. 

Examining component loadings: Loadings are calculated for each variable - component 
combination. The values considered are usually greater than 0.7 or less than -0.7 because they 
are covariances/correlations between the original variables and the unit-scaled components.

In some cases, only variables with loading scores greater than 0.8 or even more are considered 
when many highly loaded variables appear in one component. It is possible to group such 
variables to keep similarly expressed variables in the component for further analysis.
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Table 7. Indicator groups after PCA with corresponding component loadings (Tajikistan)

Component Name* DSV Indicator from DHS Data**
Component 

Loadings  
(> 0.7 or 0.5)

Variance 
Explained

Sum of 
variance

1 0.236 0.23

Socio-economic

Highest educational level 0.9075
Education in single years 0.8764
Has an account in a bank 0.8432
Wealth index combined* 0.8262
Covered by health insurance 0.7837
How often uses internet -0.7205

2 0.146 0.38

Medical infrastructure

Getting medical help:

Getting permission to go 0.7720
Distance to health facility 0.8051
Having to take transport 0.8034
Not wanting to go alone 0.8312
Concern no female health 
provider

0.8102

3 0.107 0.49

Social capital

Domestic violence

Gender equality

Beating justified if wife:

Goes out without telling husband 0.7878
Neglects the children 0.7590
Argues with husband 0.7905
Refuses to have sex with 
husband

0.7724

4 0.096 0.58

Critical infrastructure
Has telephone (landline) 0.752
Household has electricity 0.743

5 0.087 0.67

Demographic

Respondent’s current age 0.7980
Number of household members -0.784
Number of eligible women in 
household

-0.767

6 0.056 0.73

Infrastructure
Main floor material 0.6764
Main roof material 0.5794
Main wall material 0.7015

7 0.053 0.78

Health

Literacy

Frequency of reading newspaper 
or magazine

0.5088

Frequency of listening to radio 0.5914
Hemoglobin level (g/dl decimal) -0.5687

* Component name: Assigned to components to reflect the main indicator groups relevant for social vulnerability  

** Indicators selected according to country of interest. Indicators change with application in other countries
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Table 7 highlights the outputs of the PCA analysis that are used for index computation. The 
columns on the right-hand side ‘variance explained’ and ‘total variance’ show each component’s 
explanatory power regarding the total sum of all components. Since we used 44 variables as the 
input, we received 44 components after performing the PCA analysis. The first 7 components 
explain around 78 percent of the total variance, and henceforth are used to construct the index. 
Each component consists of several variables with high loadings. Hence, the components are 
named after the variables that constitute them. 

Directional adjustment (or cardinality) is applied to an entire component to ensure that the 
signs of the subsequent defining variables are appropriately describing the tendency of the 
phenomena to increase or decrease vulnerability. This is done by adjusting the sign of the 
individual variables selected by the PCA within a component. Variables that possess a negative 
asserted influence on vulnerability are multiplied by -1. In the case of positive variables, the 
result is a positive number.

Weighting is done by using the individual component loadings of each variable as weights. We 
tested several approaches of weighting for the resulting factors and used geodata to predict 
the resulting SV scores. We were able to fine-tune the weighting approach by cross-validating 
the results with their representations in geoinformation and chose the weighted scores due to 
their higher correlation with the available geodata. 

In further mentions in this whitepaper, we refer to this score as ‘SV_Scaled’ in the online 
repository. We apply cardinality corrections to the variables of each component and use their 
loadings as weights to represent their strengths in regard to the total components. After that, 
we applied another weight as the component itself had a total contribution to the total variance 
explained. We tried the same experiments without scaling and predicted the resulting SV scores 
with the available auxiliary data sources. We found that the best model results are obtained with 
scaled SV scores.

Calculate social vulnerability by placing all the components with their directional (+, -) 
adjustments into an additive model to generate the overall SV score for the place. 

		               	  	               n

Componenti Scaled = ∑ (Indicator *  signj * loadingj ) *  tot.variance
		            	            j = 1

		               	              	   n

Componenti Unscaled = ∑ (Indicatorj *  signj * loadingj )
		            	                  j = 1

Where Indicator is the corresponding variable previously selected and then returned by the PCA 
process with loading scores. Loading: for each principal component, the algorithm used returns 
a loading score (similar to correlation) per used input variable. For example, as presented in 
Table 7, the first variable of the first component had a loading score of 0.9. Sign is the assigned 
cardinality by an expert, or based on suggestions from literature. Each variable has an assigned 
cardinal influence on social vulnerability. 

For instance, when looking at component 1 in Table 7, the second variable is ‘Education in single 
years’, with an assigned loading score of 0.87. In order to represent the correct cardinal direction, 
the variable is multiplied with -1 (or -0.87 if using loading scores as weights) for directional 
adjustment. The reason is that ‘Education in single years’ decreases vulnerability, if the number 
of years increases. Tot. variance (Total variance) is the total contribution of that component to the 
variance of the PCA. 
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	              n

SV Score = ∑ (Componenti )
	           j = 1

Where SV Score is the sum of all components. The components already exhibit the correct cardinal 
sign before this step, henceforth no additional sign changes are necessary. Components with 
decreasing effects on vulnerability will go into the equation with negative signs and components 
with increasing effects on vulnerability with positive signs.

Figure 5. Social vulnerability scores for survey points in Tajikistan

Figure 6. Distribution of vulnerability points near the 
metropolitan region of Dushanbe, Tajikistan

The outcomes of the calculation 
process are vulnerability points 
which can be seen in Figure 
5.  One pattern that always 
seems to emerge from our social 
vulnerability scores is that urban 
centres always exhibit lower 
vulnerability scores than rural 
areas (tested countries: Albania, 
Ethiopia, Kenya, Tajikistan).

Figure 6 shows that even in close 
proximity to the metropolitan 
region of Dushanbe, as distance 
increases, highly vulnerable 
population groups can be found 
(red dots). 

The designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever 
on the part of the Secretariat of the United Nations or UNDP concerning the legal status of any country, territory, city or area or its 
authorities, or concerning the delimitation of its frontiers or boundaries.



28 Digital Social Vulnerability Index Technical Whitepaper

Normalizing (scaling): Just as described in Chapter 2.3, we normalize the SV scores obtained 
to a common scale of 0-1.

     	          xi – xmin
        

xnorm =  
	          xmax – xmin

Grouping: SV scores can be mapped using an objective classification (i.e. quantiles or standard 
deviations) with 3 or 5 divergent classes to illustrate areas of high, medium and low social 
vulnerability. It is common to display SV in units of standard deviation to reduce the impact of 
outliers in the final map. The grouped scores can be used to train classifiers instead of regression 
models. In our experiments, the success rate of regression models was higher than classifiers, 
such as neural nets (See Chapter 3).

Aggregating to administrative boundaries: The obtained scores can then be aggregated to a 
chosen municipality or district level based on administrative units, as shown in number 3 (Figure 
7) Aggregation can be performed by conducting a spatial join and calculating a statistical score 
(such as mean value for all points within the boundary). The generated map is comparable with 
classical variations of SV from other sources, or the traditional method explained in the UNDP 
handbook.

Figure 7. Calculation and aggregation of social vulnerability

This way of presenting aggregated information is a popular way to show vulnerabilities and other 
socio-economic indicators on maps because the source material was not available for every 
corner of the country. This can become a problem because small-scale changes in vulnerability 
cannot be identified with this map. To overcome the limitations, we propose enhancing the 
available datasets with spatial or geographical datasets and use those to predict SV on a much 
finer scale. This is described in detail in Chapter 3. High-resolution mapping.
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3. High-resolution social vulnerability
This chapter explains the processes we used to derive high-resolution social vulnerability maps. 

3.1 Workflow
This process follows the methodology proposed in ‘Urban social vulnerability assessment with 
physical proxies and spatial metrics derived from air- and spaceborne imagery and GIS data’ 
by Müller et al. (2009), among other methodologies. We also utilized knowledge obtained from 
various papers, which use raster proxy data (or auxiliary geodata in Table A1) to predict socio-
economic resilience/vulnerability and poverty metrics, such as social vulnerability.

Figure 8. Overview of workflow for high-resolution SV

Figure 8 shows the high-level process which we used to combine the calculated SV scores with 
geodata to obtain estimations for locations not covered by survey data points. The resulting 
map explains the SV with as much accuracy as the models were able to predict the test data 
derived from our SV sample. First, we use the input datasets, survey data and geodatasets, after 
the pre-processing steps are concluded. We identify the dependent and independent variables 
in the context of the model and feed the datasets into various machine-learning models to 
establish a link between the two. 

After the modelling process and the assessment of the accuracy scores, new social vulnerability 
regions can be predicted by using the same geodatasets as in the training phase. The results 
are new high-resolution social vulnerability maps, which give us insights into vulnerabilities, 
where surveys or other monitoring programmes were not conducted. 
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3.2 High-resolution mapping (spatial disaggregation)
The middle map of Figure 9 shows various layers of geographical data which are widely      
available, or specifically derived with procedures developed for the calculations. The geographic 
data is stacked and then fed into a model utilizing machine learning to predict the calculated 
scores (1). The results can be seen as a high-resolution map on the right-hand side (3). This 
allows practitioners and users to see SV in exceptionally fine detail, down to neighbourhood 
levels of small cities. This level of detail is a new feature and has not been implemented in any 
known  SV mappings within UNDP.

Figure 9. Schematic of SV prediction with spatial data

The output map 3 of Figure 9 is a simple example of a high-resolution social vulnerability map. 
The selected baseline model was a simple linear regression, with varying options of train/
test samples, differently scaled input variables and slightly adjusted SV input variables. The 
presented data layers (2) are input layers to predict social vulnerability, which might provide a 
basis for further analysis. We explain the used datasets and models in more detail in the latter 
sections of this whitepaper (Chapter 3.4). 

3.3 Geodata exploration
The used geodatasets represent the biophysical and socio-economic realities of the countries. 
We aimed to obtain datasets with the highest possible resolution and the closest time to the 
present. We prefer the datasets that are less than five years old and are the result of other 
scientific studies. Some of the datasets can be derived from crowdsourced sources and further 
processed by the team. 
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Figure 10. Correlation plot of chosen spatial variables for the test case in Tajikistan. 
Later combinations of geospatial variables in other countries are subject to change

Figure 10 shows the correlation diagram of the selected spatial variables. For modelling, we 
wanted to avoid high correlations between the dependent variables, as well as insignificant 
correlations. The chosen threshold can be based on the relative cumulative distribution of 
correlation scores. We excluded highly intercorrelated pairs of variables, such as elevation with 
temperature (and vice-versa) and chose the remaining variables according to their correlation 
with SV. The remaining variables are relatively more highly correlated with SV than their 
respective pairs.
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Table 8. Absolute correlation between SV and geodata (> 0.3), Albania

Correlation pair: SV
Pearsons’ Correlation:

Albania Data
Pearsons’ Correlation:

Tajikistan Data

Relative wealth ~ SV No data 0.728

Road density ~ SV* No data 0.637

GDP_2015 ~ SV No data 0.428

Vegetation Index (NDVI) ~ SV 0.557 0.260

Nightlight Intensity (NTL) ~ SV 0.527 0.606

Drive time to financial service ~ SV* 0.517 0.394

Popdens ~ SV 0.509 0.458

Drive time to health ~ SV* 0.447 0.432

Drive time to education ~ SV* 0.351 0.395

* Derived from OpenStreetMap data

After computing the SV scores for each cluster, underlying raster data is used to construct 
models to predict SV within those clusters (Figure 8). The chosen model, in the first iteration 
of this product, was a multiple linear stepwise regression. At first, a multitude of raster proxies, 
which were derived from multiple sources, were used in the prediction (subset of the total list 
is in Table 3).

3.4 Social vulnerability prediction: Baseline model
In order to see what methods worked most optimally, we first established simple prediction 
models and then explored the technologies further. We compared the performance of different 
types of classification models. As we want to determine the relations between dependent and 
independent variables, the regression analysis is a suitable approach. Additionally, since the 
correlation between the dependent and independent variables exists, linear models can be 
used (James et al. 2021).

The baseline models used for the predictions are multivariate linear regression and stepwise 
regression. Multivariate linear regression is an extended version of simple linear regression, 
but unlike simple linear regression, it uses two or more independent variables to predict the 
dependent variable (Su et al. 2012). The model is implemented using sklearn library.22

y = α + β1 x1 + … +  βm xm

Where y is the result of the regression, α is a constant added to the model to offset the lines 
intersection point with the y axis, βm are slope parameters for the input data points xm. 

Stepwise regression is an iterative process used to determine the predictors that will be      
included in the final mode. After running the statistical tests and evaluating the p-values 
(probability values) of the independent variables, we run the new multiple regression using 
only the variables that passed the tests (Del Serrone and Moretti 2023). This approach ensures 
only the independent variables that have a significant influence on the dependent variable are 
included in the model (Wang et al. 2007). 
22    See https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
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We performed stepwise linear regression after eliminating highly correlated variable pairs.          
We split the SV dataset into two categories ‘Urban’ and ‘Rural’ based on their a priori assigned 
values originating from the DHS survey. After creating the model, the dataset is split into        
training and test sets with a ratio 80 percent to 20 percent SV test labels are plotted. We ended 
up with 715*0.8 = 572 training samples and 143 test samples (case Albania). In addition to this, 
we used random state and sampling randomizers to create independent sets of training/test 
samples to ensure a smaller bias in the sampling design.

3.5 Social vulnerability prediction results: Advanced model(s)
After implementing multivariate linear regression and stepwise regression, seeking for 
prediction improvements by utilizing other model alternatives is a reasonable approach. Based 
on the nature of the problem at hand, it is natural to assume that it requires a regression model 
for improvement. However, inspired by the wide range of possibilities in the machine-learning 
realm, we experimented with different kinds of regressors and discrete classifiers, such as the 
MLP classifier.23

3.5.1 Advanced regression

Huber, ridge, random forest, XGBoost and decision tree regressors are some of the applied 
regression analyses. The Huber regressor is less sensitive to outliers than the traditional linear 
regression while the ridge regression adds a penalty term to the least square errors to shrink 
the regression coefficients and thus improve the generalization of the model (Huber 1964; Hoerl 
and Kennard 1970). The decision tree regressor is a non-parametric, interpretable and popular 
method that can handle both continuous and categorical variables. It is one of the building 
blocks of the random forest algorithm (Breiman 2017). Apparently, they have some advantages 
over the baseline model, although these three regressors do not yield outstanding results. 
Therefore they are not included in the sequential steps. 

Two regression models that have demonstrated good performance across a wide range 
of applications, random forest and XGBoost regression, are the ones that also address our 
prediction improvement effort. They have advantages over other methods, such as robustness, 
non-linearity, the ability to handle missing data and identify feature importance, speed and 
scalability (Breiman 2001; Chen and Guestrin 2016). Random forest is an ensemble learning 
method for regression and classification. 

Random forest regression, as can be seen in Figure 11, involves randomness during the 
construction of the decision trees by not only selecting the features but also sampling the data. It 
also provides a mean prediction of the individual trees. The randomness and voting mechanism 
for each tree prediction contributes to the robustness of the model and improved accuracy. In 
addition, the use of randomness can also have a positive effect on the reduction of overfitting 
(Breiman 2001). 

23    See https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
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Figure 11. Random forest trees run in parallel without interactions and the final output      
consists of the mean of the classes as the prediction of all trees 24

A more recent regressor, XGBoost, was developed to overcome challenges of the gradient 
boosting algorithms, such as overfitting, limited parallelism and slow computation. It combines 
gradient boosting and decision trees and is able to handle various types of data with its high 
level of scalability and efficiency (Chen and Guestrin 2016). Unlike random forest, where each 
tree model is trained independently and has equal weight in the final prediction, XGBoost uses 
a sequential approach where each tree model minimizes the residual from the previous tree 
model XGBoost (Wang et al. 2020). A simplified structure of XGBoost is shown in Figure 12.

Figure 12. Simplified structure of XGBoost (Wang et al. 2020)

24    See https://levelup.gitconnected.com/random-forest-regression-209c0f354c84
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Slight differences in hyperparameter values of both random forest and XGBoost regressors can 
lead to significant changes in outcomes. Hyperparameters used in the random forest regressor 
function25 are given in Figure 13 and detailed below:

-	 max_depth: The maximum depth of the tree in the forest. The complex relationships in 
the data can be captured by a deeper tree, but the loss in exchange for it increases the 
risk of overfitting.

-	 max_features: The number of features to consider when splitting a node. Setting ‘auto’ 
equalizes the hyperparameter to number of features and setting smaller values than 1 
increases the randomness. 

-	 min_samples_leaf: The minimum number of samples required to be at a leaf node. 
Together with min_samples_split, the higher values can lead to underfitting while 
reducing them can also increase the risk of overfitting.

-	 min_samples_split: The minimum number of samples required to split an internal node.
-	 n_estimators: The number of trees in the forest. Increasing the ‘n_estimators’ value can 

improve the accuracy, but also yields longer training time. 

RFR_model  = 	RandomForestRegressor(max_depth = 50,
 			   max_features= 'auto',
			   min_samples_leaf= 1,
 			   min_samples_split= 7,
 			   n_estimators= 75)

Figure 13. Random forest regression parameters

Like random forest regressor, tuning the hyperparameters of the XGBoost regressor function26 
can improve its performance. In addition to the ‘n_estimators’ and ‘max_depth’ of the random 
forest regressor, several more hyperparameters used in XGBoost regressor can be found in 
Figure 14 and are detailed below: 

-	 colsample_bytree: The ratio of subsample columns used to train each tree. The values 
less than 1 can reduce overfitting.

-	 lambda: The higher value of the lambda the more conservative the model. It is the L2 
regularization term for avoiding overfitting, and the default value is 1.

-	 learning_rate: The step size shrinkage used to prevent overfitting. The smaller rates can 
increase the training time. 

-	 min_child_weight: Minimum sum of instance weight (hessian) needed in a child. It can 
reduce the overfitting risk, and as it takes greater values than the default value 1, the 
algorithm becomes more conservative.

 

25    See https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
26    See https://xgboost.readthedocs.io/en/stable/parameter.html
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XGB_model   = 	xgb.XGBRegressor(colsample_bytree: 0.5, 
             	lambda: 1, 
			   learning_rate: 0.01,
			   max_depth: 5, 
			   min_child_weight: 5, 
			   n_estimators: 1000)

Figure 14. XGBoost parameters

Both random forest (Breiman 1996) and XGBoost regressors benefit from K-fold cross-validation 
and hyperparameter search using GridSearchCV to achieve promising improvements. K-fold 
cross-validation is a type of cross-validation that involves repeating the process of splitting a 
dataset into K subsets/folds. One part is used for validation and the remaining parts (K-1) are 
united to be a training dataset. The model is trained and evaluated on each fold separately. 
In the end, each model is being fitted on a partly overlapping training set and evaluated on a 
distinct validation set. The overall performance is calculated as the average of K performance 
estimates from the validation sets (Raschka 2018). The illustration of the process is shown in 
Figure 15. 

Figure 15. K-fold cross-validation, hyperparameter tuning, training 
and testing the model. Adapted from Raschka (2018)
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The GridSearchCV27 function of scikit-learn conducts an exhaustive search over a specified 
hyperparameter grid (param_grid) and returns the best combination of hyperparameters. The 
following code cell consists of a XGBoost regressor model (xgbr as an estimator) and the fivefold 
cross-validation (if cv is set to None it uses fivefold by default) to obtain the best combination of 
hyperparameters. Evaluation metrics are defined as ‘r2’ and ‘neg_mean_squared_error’ in the 
scoring parameter.

Additional optional parameters used in GridSearchCV are ‘refit’ and ‘return_train_score’. When 
set to True, ‘refit’ uses the best-found parameters on the whole dataset to refit the estimator 
(xgbr), while when ‘return_train_score’ is set to True, it includes training scores in attributes of 
provided output. The delivered combination of parameters should provide the highest model 
performance. 

Having a very high number of estimators, or a depth of the trees, does not necessarily mean the 
most accurate results, as there is a certain value for a parameter for which no further improvement 
in accuracy is evident (Karshiev et al. 2020). GridSearchCV automates the process of finding a 
combination of these parameters. 

scoring = ["r2", "neg_mean_squared_error"]

xgbr = xgb.XGBRegressor()
start = timeit.default_timer()
clf = GridSearchCV(estimator=xgbr, 
                   param_grid=params,
                   scoring=scoring,
                   refit = True,
                   cv = None,
                   return_train_score=True,
                   verbose=2)
clf.fit(X_train, y_train['SV_scaled'])

Figure 16. GridSearchCV function with a XGBoost regressor and a fivefold cross-validation

3.5.2 Neural nets

The last part of this chapter is the implementation of the classifier model. Although a conventional 
approach for this prediction requires regression models, utilizing the MLP classifiers another 
attempt to get improved results. For the MLP classifier from sklearn, we grouped SV in classes 
of roughly evenly populated groups [‘Low’, ‘Medium’, ‘High’] and [‘Very Low’, ‘Low’, ‘Medium’, 
‘High’, ‘Very High’] and we trained a neural network with five hidden layers. We experimented 
with multiple setups, including different layers, depths, iteration sizes, learners and activation 
functions. 

One instance of the function setups with mentioned hyperparameters is provided in Figure 17. 
We also performed GridSearchCV for better model hyperparameters. This setup has generally 
been the most efficient with the highest average accuracy score for the test datasets. The total 
accuracy scores for the MLP and results obtained with the regressors will be provided in the 
next chapter.

27    See https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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NN_model = MLPClassifier(hidden_layer_sizes=(200, 400, 200, 100, 50),
                         max_iter = 3000, activation = 'relu',
                         learning_rate = 'adaptive',
                         alpha = 0.0001,
                         solver = 'sgd')

Figure 17. Chosen model for NN after model selection with GRID CV and multiple inputs

3.6 Results and discussion
The model performance evaluation is assessed using several error metrics. We use different 
methods to evaluate classification and regression models.

3.6.1. Model evaluation: Neural net

Table 9 shows model scores using three and five classes. Already the training score 
shows low performance. Test scores of 60 percent are the lowest acceptable value, 
although none of the models reached that accuracy.  

Table 9. Error metrics of MLP

Model  
Train   

Accuracy  
Test   

Accuracy  
Target classes

NeuralNet (MLP)   0.75   0.59   3 classes*

NeuralNet (MLP)   0.61   0.41   5 classes*  

* Classes: ‘Low, Medium, High’ or ‘Very low, Low, Medium, High, Very High’
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Figure 18. Side-by-side comparison with neural net and regression prediction for Albania.  
Left: 5 classes of vulnerability based on multilayer perceptron model;  

Right: Continuous SV based on multiple stepwise linear regression

The left-hand map (1) in Figure 18 shows the result of the five-class prediction of the chosen 
multi-layer perceptron model in Albania. The distribution of predicted values goes according 
to the five categories we defined, based on the initial floating point number SV with a range 
between 0 and 1. The new five classes were derived, based on an approach to minimize class 
imbalances, by manually adjusting the sampling weights and class breaks. We achieved a 
homogeneous class distribution of approximately 1/5 sample size for each class. The right-
hand map is a prediction of a stepwise multiple regression model with cross-validation and 
hyperparameter optimization. Our initial results using neural nets were not very promising, but it 
seems to be more beneficial to use regression strategies to model this relationship.  

3.6.2. Model evaluation: Regression

Root mean square error (RMSE) is used as one of the performance criteria for our results.           
RMSE is the standard deviation of the residuals (prediction errors). 

         		      n       (ŷi  - yi )
2

RMSE = √  ∑ 
		   i = 1           

n

The designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever on the part of the Secretariat of the 
United Nations or UNDP concerning the legal status of any country, territory, city or area or its authorities, or concerning the delimitation of its frontiers or boundaries.
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Where ŷi are the predicted values, yi the observed values and n is the number of 
observations.  Residuals are a measure of how far from the regression line data points are, 
while RMSE is a measure of how spread out these residuals are. In other words, it shows how 
concentrated the data is around the line of best fit.28

The mean squared error (MSE) is defined as the average squared distance between the 
predicted and the true values. It is also a loss function used for regression tasks as it squares 
the errors and therefore makes the model less robust to the outliers. Good models should have 
MSE close to zero.

   	       
1 

    n  

MSE =  ∑(ŷi – yi )
2 

	       
n

  i = 1

where ŷi are the predicted values, yi the observed values and n is the number of observations.

Furthermore, we looked at the coefficient of determination of variation R² to understand how 
much of the total variance was explained by the model.

  	           SSRES 
	          ∑ i (yi – ŷi )

2

R2 = 1 –    = 1 –  
 	           SSTOT	          ∑ i (yi – y̅i )

2

Where SSRES  are the sum of squared residuals and SSTOT  the total sum of squared error. Both 
values, the RMSE and R² explain much about the quality of a model. We were also able to 
compare the scores with other regression models since these could be interpreted by the same 
evaluation metrics.

Figure 19. Scatterplot of predicted and ground truth SV (n = 715) by using 
a stepwise linear regression for urban and rural clusters in Albania. 

Orange and blue lines: best fit for samples split for urban and rural samples.

We ran multiple regression analysis with different sets of variables and different scaling methods. 
The best results were obtained by choosing the full set of variables (as shown in Table 10) or the 
reduced amount after intercorrelation elimination.

28    See https://www.statisticshowto.com/probability-and-statistics/regression-analysis/rmse-root-mean-square-error/
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Table 10. Error metrics of regression models 

Model   R²   RMSE   MSE

Linear model (base model) 0.68  0.124  0.021

Random forest   0.72  0.10  0.01

XGBoost  0.72  0.103  0.0106

MLP regressor 0.63 0.11 0.013

Huber regressor 0.66 0.10 0.012

Ridge regressor 0.69 0.10 0.011

Lasso regressor 0.65 0.10 0.012

Decision tree regressor 0.52 0.13 0.017

* Best models were determined with K-fold cross-validation    
  Root mean square error: Lower is better; Green colour: Best performing models, used for high-resolution map

 
Linear regression assumes linearity between the variables, which in the real world is almost 
never the case. If the multicollinearity between independent variables is not removed, linear 
regression will not show satisfactory performance (Shrestha 2020). Even though we considered 
these limitations and fed the model with the well pre-processed input data, the model still shows 
lower performance compared to others. 

Decision tree regressor shows the poorest performance of the mentioned models. Decision 
tree regressor is not the best option when dealing with continuous numerical variables, as a 
small change in data can cause large differences in the tree structure (Gulati et al. 2016). This is 
confirmed due to low R2 and high MSE.

Promising improvements were achieved by using K-fold cross-validation and hyperparameter 
search using GridSearchCV for regression. The best results were obtained by random forest 
regression and XGBoost regression. We observed that most models converged around R² of 
0.72 or RMSE of ~ 0.10 – 0.12 for the test country, Tajikistan.

Random forest regression performs well on continuous values, reduces overfitting and is well 
suited for regression tasks. However, random forest regression yields a trade-off between 
the training time and the number of trees. The increasing number of trees requires more 
computational time and space, although it can improve accuracy but only until the number of 
trees reaches a certain value. 

Above that value, no significant model improvements can be found (Karshiev et al. 2020).  On 
the other hand, if the number of trees is too small, there is a possibility of underfitting (Han et al. 
2020). Using GridSearchCV and K-fold cross-validation we received the most accurate results 
with 75 trees and a maximum depth of 50. 

As XGBoost regression combines methods of regression trees and gradient boosting, we are 
able to tune the great set of hyperparameters. The high dimensionality of the data leads to high 
memory consumption, making the model costly-insufficient. XGBoost applies the learning rate 
to the loss function to ensure the minimum loss (Chen and Guestrin 2016). The resulting maps 
of this process can be seen in Figure 22. Figure 20 shows the resulting scatterplots with train 
and test data prediction and fitted lines (orange and blue). The modelling improvements can be 
viewed in our Notebook 5 of the DSVI repository on GitHub.29

29    https://github.com/SDG-AI-Lab/DSVI_Tajikistan (to access site authors’ authorization is required).

https://github.com/SDG-AI-Lab/DSVI_Tajikistan
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Figure 20. Improved modelling results with using K-fold random sampling 
and GridSearchCV, Tajikistan

The influence of some predictor variables, such as the ‘celltower density’ or ‘road network per 
km², are also visible and seem to have been regarded positively by the models. The results 
show differences of scores in some regions of the country and they also weigh the importance 
of some input variables differently. The predictor variables feature importance is shown in    
Figure 21. 

Figure 21. Feature importance for XGBoost regressor in the case of Tajikistan

‘Feature importance’ refers to techniques that calculate a score for all the input features for 
a given model – the scores simply represent the ‘importance’ of each feature. A higher score 
means that the specific feature will have a larger effect on the model that is being used to 
predict a certain variable.30 Feature importance is not a perfect or absolute measure for variable 
influences on a model. They are an indication and can help understand general trends and 
relationships between datasets and models.

30    Terence Chin, ‘Understanding Feature Importance and How to Implement it in Python’, https://towardsdatascience.com/under-
standing-feature-importance-and-how-to-implement-it-in-python-ff0287b20285
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Figure 22. Improved prediction for Tajikistan with XGBoost

Figure 22 shows the XGBoost model results after hyperparameter tuning. Social vulnerability 
tends to increase in remote areas, such as mountainous places. Lower SV scores tend to cluster 
in urban areas, particularly in the capital area of Dushanbe in the western centre of the country. 

Figure 23. SV scores masked with elevation above 3,650 m 
(highest populated place in Tajikistan)

The designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever on the part of the Secretariat of the 
United Nations or UNDP concerning the legal status of any country, territory, city or area or its authorities, or concerning the delimitation of its frontiers or boundaries.

The designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever on the part of the Secretariat of the 
United Nations or UNDP concerning the legal status of any country, territory, city or area or its authorities, or concerning the delimitation of its frontiers or boundaries.
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Figure 23 is an example for a final social vulnerability map that could be considered a final 
output of DSVI. The map illustrates the social vulnerability scores for Tajikistan, while masking 
uninhabited areas. The eastern regions of Tajikistan, dominated by high mountains and alpine 
conditions, are mostly uninhabited. Generally, social vulnerability scores do not make a lot of 
sense for areas which are potentially uninhabitable, such as alpine environments, water bodies, 
dense forests, or other extreme biospheres and climate zones. Another case is regions that 
are unpopulated, but potentially habitable: Looking at SV scores in those regions could help to 
open up new views on settlement options in them and potential risks. 

The lowest social vulnerability scores are in the urban areas of the country. The capital city, 
Dushanbe, in the centre west of the country, with well below average vulnerability, is most 
notable in that regard. Social vulnerability tends to increase with growing elevation and with 
increasing distance to areas with high economic output as measured by nightlight intensity. 
Other factors are the distances to health infrastructure, finance and education. Some areas in 
the south of the country have relatively high vulnerability scores because of the input variable 
‘relative wealth’ and its relatively poor representation in that area.

4. DSVI online tool
	
The web application was created as an interactive and user-friendly tool to enable users to 
communicate effectively with the core elements of the DSVI. The DSVI online tool provides 
a feature-rich interface that allows users to fully experience not only the contextualized final 
prediction results, but also the intermediate outcomes like SV scores and certain controlling 
functionalities. The online tool can easily be accessed by using any web-browser. It is lightweight 
and does not consume a lot of resources, which means it can also be run in difficult environments 
with less bandwidth or unfavourable hardware specifications. The design of the tool is meant to 
be intuitive and easy to use, but it can still offer in-depth analysis to users wanting to conduct 
more complex analytics. It was developed in collaboration with UN Online Volunteers. The used 
technologies are react-leaflet,31 next.js32 and geoserver33 for database management and remote 
access.

The base functions of the tool are similar to other online mapping tools, such as the following 
ones:

•	 Zoomable, integrated map with different base maps
•	 Data layers to show social vulnerability as points, aggregated or with high resolution
•	 Data layers to show the biophysical realities in the region or country of interest
•	 Layers to show survey data points and summary statistics of survey characteristics

31     See https://react-leaflet.js.org/
32    See https://nextjs.org/
33    See https://geoserver.org/
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The online tool has core features that make it distinct from other vulnerability analysis tools:

•	 Planned: Options to change colour and display of SV scores
•	 Planned: Options to show and change model parameters
•	 Planned: Analysis mode to derive further insights into vulnerable groups and their 

position relative to critical infrastructure, regions with high disaster risk, or similar factors 
•	 Planned: Dashboards to summarize statistics regarding the used parameters, 

vulnerabilities and survey data accessed by users
•	 Additional features based on user requirements

The online tool is intended to be used by various user groups. User groups can be private 
individuals who were granted access by the partnering organization, professionals, policymakers, 
stakeholders, or technical analysts. The list of users is not limited to the previous examples. 
The users can access diverse functionalities and data of the tool based on their assigned user 
group. Further development of the tool will include a user-based system to control the flow of 
information based on the type of user accessing the tool. The 2022 version of the tool can be 
viewed in Figure 24.

Figure 24. Digital social vulnerability tool showing the main map window

The designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever on the part of the Secretariat of the 
United Nations or UNDP concerning the legal status of any country, territory, city or area or its authorities, or concerning the delimitation of its frontiers or boundaries.



46 Digital Social Vulnerability Index Technical Whitepaper

5. Conclusion and implications

The methodology builds on established scientific methods and literature, utilizes extensive 
and diverse datasets and combines them with a digital approach to create the Digital Social 
Vulnerability Index with GIS and machine-learning techniques. The nature of the chosen process 
brings flexibility in calculating the scores with different sets of variables and different settings for 
the modelling parameters. 

Since we defined social vulnerability scores as ground truth with no independent reference in 
the real world, it is difficult to validate the gridded high-resolution SV with external data sources. 
We observed that the SV scores we calculated were reasonable in the sense that they followed 
the general expectations of human development and well-being indicators for the countries 
we tested. But, on the other hand, SV should also display certain unexpected discrepancies, 
which should be revealed by the distinct nature of what SV tries to measure compared to other 
indicators. 

It is expected that SV scores tend to correlate with similar indicators, such as general wealth or 
a predefined relationship with access to basic infrastructure. Since there are no available other 
social vulnerability maps or datasets in a gridded representation, it is not possible to directly 
validate the scores of the high-resolution maps other than using the accuracies of the models. 
One solution to this problem is the examination of the scores with the help of experts and 
making critical assessments of their validity this way. 

The implemented pipelines, SV calculations and machine-learning techniques automate the 
technical process of calculations in the background and unlock the results in a user-friendly and 
interactive manner. They also decrease the time and costs necessary to perform the analysis 
manually. However, since a reasonable interpretation of social vulnerability scores is dependent 
on expert opinion, the processes must be supervised to ensure high-quality outputs. 

The presented approach can be implemented with available DHS datasets, and also with 
country-specific geotagged surveys provided by users. Geographical data is broadly available 
for the SV prediction process to obtain new high-resolution maps. 

DSVI satisfies the need for modern digital solutions and will strengthen the much-needed 
internal digital capacities of UNDP. Being in accordance with the UNDP strategic plan and 
policies, DSVI presents a tool that is both able to calculate the social vulnerability scores and to 
identify the main drivers or indicators. This is valuable information to organizations, stakeholders, 
policymakers and others to plan further corresponding actions, investments and initiatives to 
reduce the vulnerability and to strive towards achieving the Sustainable Development Goals. 
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7. Annex

DHS displacement correction
DHS geotagged survey clusters come with an artificial displacement to protect the privacy of 
interviewed households and to prevent geolocating individual households. For urban clusters, 
this displacement is done randomly within a radius of 2 km. This means that an urban classified 
cluster could potentially be relocated between 0 and 2 km from its original position in all possible 
directions on a circle. The same rule applies to rural clusters, which can be dislocated by up to 
5 km. 

However, this displacement is of a random nature, so an average distance to the original point 
will be half of the displacement value, ergo only 1km on average for urban clusters and 2.5 
km on average for rural ones. This can pose a problem because if we predict a value uniquely 
attributed to the true position of a survey point, we need to make sure that the deviation from 
its original value is as small as possible. In general, studies have tried to explain the resulting 
error (Warren et al. 2016) and proposed solutions similar to the one we used (Grace et al. 2019). 

Based on these insights, we used the ‘Global Human Built-up and Settlement Extent (HBASE)’ 
Dataset from Landsat, v1 (2010)34 to reduce the introduced variance to the highly dispersed rural 
cluster points. We assumed that a given cluster point must have been taken within a human 
settlement, or with a very high likelihood thereof. Some of the rural settlements are very small 
compared to the urban ones and are hard to locate. The HBASE dataset is based on 30 m pixel 
resolution and indicates the existence of human built-up areas for the whole country. 

We transformed the data into a fishnet grid and snapped it as rural classified cluster points that 
were within a radius of 5 km to the nearest intersection point of the human settlement. If a point 
already resided within a settlement area, we skipped the procedure. This procedure ensures 
that the sampled point is as close as possible to a settled location near or exactly on its original 
location. 

In rural areas, there are often only a few settlements, or one human settlement, within a radius 
of 5 km or less to a DHS survey cluster point. 

Even if the correct settlement was not located with this procedure, the general characteristics 
of settlements in rural areas represent each other better than a randomly placed point and 
therefore should help to generate a more useful dataset for this type of analysis. For our SV 
index and high-resolution map (see section 3), we used original uncorrected and corrected 
points respectively to assess the differences of model responses.

34    NASA. Socio-Economic Data and Applications Center (SEDAC), Global High-Resolution Urban Data from Landsat,                 
https://sedac.ciesin.columbia.edu/data/set/ulandsat-hbase-v1/data-download
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Table A1. List of used geodata for test case in Albania with descriptive statistics

Index Variable Name Mean*** Min Max Std**

1 Distance to Airport* 345.54 1.00 870.46 166.60

2 Distance to Coast* -52.15 -150.00 23.00 39.81

3
Distance to Education 
Facility*

178.90 1.41 705.57 129.45

4 Elevation in meter 692.59 -7.00 2605 573.79

5
Distance to Financial 
Facility*

172.33 0.00 768.52 131.67

6
Distance to Health 
Facility*

177.40 0.48 641.34 176.33

7
Distance to Health 
Facility 2*

197.98 1.00 769.92 150.73

8 NDVI 0.58 -0.08 0.92 0.26

9 Nightlight Intensity 0.41 0.00 116.76 2.59

10 Population Density 95.32 0.00 13115.94 458.55

11 Precipitation Average 128.27 0.00 335.00 56.77

12 Distance to Road* 75.11 0.00 656.40 124.17

13
Temperature Average 
(July)

23.62 0.00 32.70 8.98

14 Distance to River* 86.76 0.00 669.65 126.39

15
Population Density 
Women

0.34 0.00 10.12 0.64

* As calculated per Euclidian Distance (Heatmap) ** Standard deviation, *** Arithmetic mean

Figure A1. Absolute differences in SV predicted scores for the two best performing models. 
The models agree less in the most remote and mountainous regions of Tajikistan

The designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever on the part of the Secretariat of the 
United Nations or UNDP concerning the legal status of any country, territory, city or area or its authorities, or concerning the delimitation of its frontiers or boundaries.
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The mean differences between the two models are not equally distributed and large proportions 
fall into the uninhabited areas of Tajikistan (Figure A1), which are situated roughly 3,650 m above 
sea level. The mean disagreement between the models across the whole country is 0.05 with 
a standard deviation of 0.035. For areas below 3,650m the average discrepancy between the 
models lowers to only 0.013 with a standard deviation of 0.031. 

Table A2. Indicators and correlation with geodatasets

GROUP Indicators derived from DHS Albania
Strong Correlation  

with Geodata

       

Socio-economic

Wealth index combined*   Wealth index combined*

Respondent currently working   Respondent currently working

Has an account in a bank or other 
financial institution

 
Has an account in a bank or other 
financial institution

Getting medical help for self: getting 
money needed for treatment

   

How often uses internet   How often uses internet

       

Demographics

Respondent’s current age    

Education in single years   Education in single years

Years lived in place of residence   Years lived in place of residence

Highest educational level   Highest educational level

       

Family structure

Number of household members 
(listed)

 
Number of household members 
(listed)

Number of children 5 and under in 
household (de jure)

   

Number of eligible women in 
household (de facto)

   

Sex of household head   Sex of household head

Age of household head   Age of household head

       

Medical services

Covered by health insurance   Covered by health insurance

Smokes cigarettes   Smokes cigarettes

Getting medical help for self: concern 
no provider

   

Getting medical help for self: concern 
no drugs available

   

Getting medical help for self: concern 
that there may be no supplies

   

Getting medical help for self: distance 
to health facility

   

Getting medical help for self: concern 
no female health provider

   

Had any STI in last 12 months    
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Urban Urban / Rural    

       

Built environment 
vulnerability

Main floor material   Main floor material

Main roof material    

Main wall material   Main wall material

Time to get to water source    

Owns a mobile telephone   Owns a mobile telephone

Household has radio   Household has: radio

Result of salt test for iodine    

       

Social capital

Beating justified if wife goes out 
without telling husband

 
Beating justified if wife goes out 
without telling husband

Beating justified if wife neglects the 
children

 
Beating justified if wife neglects 
the children

Beating justified if wife argues with 
husband

 
Beating justified if wife argues 
with husband

Beating justified if wife refuses to 
have sex with husband

 
Beating justified if wife refuses to 
have sex with husband

Getting medical help for self: getting 
permission to go

   

Beating justified if wife burns the 
food

   

Getting medical help for self: having 
to take transport

   

Getting medical help for self: not 
wanting to go alone

 
Getting medical help for self: not 
wanting to go alone

Frequency of reading newspaper or 
magazine

 
Frequency of reading newspaper 
or magazine

Frequency of listening to radio    

Frequency of watching television   Frequency of watching television

       

Family structure

Number of household members 
(listed)

 
Number of household members 
(listed)

Number of children 5 and under in 
household (de jure)

   

Number of eligible women in 
household (de facto)

   

Sex of household head   Sex of household head

Age of household head   Age of household head
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Medical services

Covered by health insurance   Covered by health insurance

Smokes cigarettes   Smokes cigarettes

Getting medical help for self: concern 
no provider

   

Getting medical help for self: concern 
no drugs available

   

Getting medical help for self: concern 
that there may be no supplies

   

Getting medical help for self: distance 
to health facility

   

Getting medical help for self: concern 
no female health provider

   

Had any STI in last 12 months    

       

Urban Urban / Rural    Urban / Rural

       

Built environment 
vulnerability

Main floor material   Main floor material

Main roof material    

Main wall material   Main wall material

Time to get to water source    

Owns a mobile telephone   Owns a mobile telephone

Household has: radio   Household has: radio

Result of salt test for iodine    

       

Social capital

Beating justified if wife goes out 
without telling husband

 
Beating justified if wife goes out 
without telling husband

Beating justified if wife neglects the 
children

 
Beating justified if wife neglects 
the children

Beating justified if wife argues with 
husband

 
Beating justified if wife argues 
with husband

Beating justified if wife refuses to 
have sex with husband

 
Beating justified if wife refuses to 
have sex with husband

Getting medical help for self: getting 
permission to go

   

Beating justified if wife burns the 
food

   

Getting medical help for self: having 
to take transport

   

Getting medical help for self: not 
wanting to go alone

 
Getting medical help for self: 
not wanting to go alone

Frequency of reading newspaper or 
magazine

 
Frequency of reading newspaper 
or magazine

Frequency of listening to radio    

Frequency of watching television   Frequency of watching television
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Table A3. Survey characteristics for selected countries

Wealth index combined Education in single years

ntl 0.590 ntl 0.520

popdens 0.567 popdens 0.462

temp 0.406 temp 0.195

coast 0.315 prec 0.164

health2 0.249 coast 0.111

prec 0.248 health2 0.059

airport -0.194 waterw -0.144

waterw -0.221 airport -0.175

road -0.344 ele -0.177

ele -0.398 road -0.194

edu -0.427 edu -0.292

health1 -0.524 health1 -0.386

finan -0.598 finan -0.475

ndvi -0.668 ndvi -0.508

How often uses internet Covered by health insurance

finan 0.496 ntl 0.462

ndvi 0.482 popdens 0.444

health1 0.428 health2 0.080

edu 0.348 temp 0.056

road 0.285 prec 0.037

ele 0.266 ele -0.018

airport 0.237 coast -0.050

waterw 0.163 waterw -0.118

prec -0.153 road -0.145

health2 -0.161 airport -0.219

coast -0.193 edu -0.230

temp -0.249 health1 -0.363

popdens -0.403 ndvi -0.420

ntl -0.467 finan -0.435

Highest education level Has bank account

ntl 0.560 ntl 0.565

popdens 0.494 popdens 0.527

temp 0.198 temp 0.205

prec 0.176 prec 0.159

coast 0.121 health2 0.155

health2 0.084 coast 0.125

waterw -0.156 waterw -0.159

ele -0.183 ele -0.180

road -0.217 road -0.203

airport -0.234 airport -0.256

edu -0.326 edu -0.325

health1 -0.407 health1 -0.430

finan -0.494 finan -0.494

ndvi -0.534 ndvi -0.530
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Has telephone Medical help: distance

ntl 0.381 ndvi 0.330

popdens 0.313 finan 0.288

prec 0.086 health1 0.265

temp 0.064 edu 0.181

ele -0.018 road 0.156

health2 -0.057 ele 0.155

coast -0.099 waterw 0.101

waterw -0.128 prec -0.012

road -0.191 airport -0.043

airport -0.198 health2 -0.070

edu -0.243 coast -0.075

ndvi -0.351 temp -0.173

finan -0.359 ntl -0.247

health1 -0.362 popdens -0.276

Currently working Main wall material

popdens 0.350 ele 0.387

ntl 0.350 ndvi 0.315

health2 0.169 finan 0.299

temp 0.153 health1 0.284

coast 0.085 road 0.247

prec 0.001 edu 0.232

airport -0.032 waterw 0.121

road -0.086 airport -0.004

waterw -0.110 prec -0.164

ele -0.120 popdens -0.166

edu -0.171 ntl -0.181

finan -0.221 health2 -0.294

health1 -0.247 coast -0.359

ndvi -0.412 temp -0.383
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Table A4. Available DHS countries

# Country UNDP Region Year Type

1 Albania Europe and Central Asia 2018 Standard DHS

2 Angola Africa 2016 Standard DHS

3 Armenia Europe and Central Asia 2016 Standard DHS

4 Bangladesh Asia and the Pacific 2018 Standard DHS

5 Benin Africa 2018 Standard DHS

6 Burkina Faso Africa 2018 MIS

7 Burundi Africa 2017 Standard DHS

8 Cambodia Asia and the Pacific 2022 Standard DHS

9 Cameroon Africa 2018 Standard DHS

10 Chad Africa 2015 Standard DHS

11 Ethiopia Africa 2016 Standard DHS

12 Ethiopia Africa 2019 Interim DHS

13 Gambia Africa 2020 Standard DHS

14 Ghana Africa 2016 MIS

15 Ghana Africa 2017 Special

16 Ghana Africa 2019 MIS

17 Guatemala Latin America and the Caribbean 2015 Standard DHS

18 Guinea Africa 2018 Standard DHS

19 Guinea Africa 2021 MIS

20 Haiti Latin America and the Caribbean 2017 Standard DHS

21 India Asia and the Pacific 2016 Standard DHS

22 India Asia and the Pacific 2021 Standard DHS

23 Jordan Arab States 2018 Standard DHS

24 Kenya Africa 2015 MIS

25 Kenya Africa 2020 MIS

26 Liberia Africa 2016 MIS

27 Liberia Africa 2020 Standard DHS

28 Madagascar Africa 2016 MIS

29 Madagascar Africa 2021 Standard DHS

30 Malawi Africa 2016 Standard DHS

31 Malawi Africa 2017 MIS

32 Mali Africa 2015 MIS

33 Mali Africa 2018 Standard DHS

34 Mali Africa 2021 MIS

35 Mauritania Africa 2021 Standard DHS

36 Mozambique Africa 2015 Standard AIS

37 Mozambique Africa 2018 MIS

38 Myanmar Asia and the Pacific 2016 Standard DHS

39 Nepal Asia and the Pacific 2016 Standard DHS

40 Niger Africa 2021 MIS

41 Nigeria Africa 2015 MIS

42 Nigeria Africa 2018 Standard DHS

https://dhsprogram.com/what-we-do/survey/survey-display-525.cfm
https://dhsprogram.com/what-we-do/survey/survey-display-477.cfm
https://dhsprogram.com/what-we-do/survey/survey-display-492.cfm
https://dhsprogram.com/what-we-do/survey/survey-display-536.cfm
https://dhsprogram.com/what-we-do/survey/survey-display-491.cfm
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43 Nigeria Africa 2021 MIS

44 Pakistan Asia and the Pacific 2018 Standard DHS

45 Philippines Asia and the Pacific 2017 Standard DHS

46 Rwanda Africa 2015 Standard DHS

47 Rwanda Africa 2020 Standard DHS

48 Senegal Africa 2015 Continuous DHS

49 Senegal Africa 2016 Continuous DHS

50 Senegal Africa 2017 Continuous DHS

51 Senegal Africa 2018 Continuous DHS

52 Senegal Africa 2019 Continuous DHS

53 Senegal Africa 2021 MIS

54 Sierra Leone Africa 2016 MIS

55 Sierra Leone Africa 2019 Standard DHS

56 South Africa Africa 2016 Standard DHS

57 Tajikistan Europe and Central Asia 2017 Standard DHS

58 Tanzania Africa 2016 Standard DHS

59 Tanzania Africa 2017 MIS

60 Timor-Leste Asia and the Pacific 2016 Standard DHS

61 Togo Africa 2017 MIS

62 Uganda Africa 2015 MIS

63 Uganda Africa 2016 Standard DHS

64 Uganda Africa 2019 MIS

65 Zambia Africa 2018 Standard DHS

66 Zimbabwe Africa 2015 Standard DHS
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