

Derisking Renewable Energy Investment

Finance Case Study

[Insert Event]

[Insert Location, Date]

Aims and Agenda

Aims

- Design two alternative RE policy frameworks that both have the objective to attract private investment into 500MW of on-shore wind energy
- Compare both RE policy designs in terms of their costs and effects

Agenda

- 1. The concept of LCOE
- 2. Introduction to the UNDP DREI tool
- 3. Case study
 - 1. Step 1: Modelling the Baseline
 - 2. Step 2: Designing the cornerstone instrument RE policy
 - 3. Step 3: Designing the instrument package RE policy
 - 4. Step 4: Comparing both R
- 4. Discussion

1. LCOE – concept and formula (1)

- LCOE stands for "Levelized Cost of Electricity"
- LCOE is given in cost per unit of energy (e.g., USD/MWh)
- LCOE represents the constant unit cost over the entire life cycle of a plant (i.e., lifecycle costs), considering the financing costs

- If a plant owner receives a tariff at the LCOE, the plant operates exactly at the profitability threshold (NPV=0)
- \Rightarrow LCOE is a good concept to calculate tariffs for Feed-in tariffs and PPA auctions
- ⇒ LCOE is a good indicator to compare technologies (even with different life times)
- \Rightarrow Commonly used by policy makers, planners, researchers and investors

1. LCOE – concept and formula (2)

- The discount rate in LCOE represents the financing costs
- In the model we use an equity perspective, hence the formula is more complicated

	$(O\&M Expense)_{\tau} + (Debt Financing Costs)_{\tau} - Tax Rate * (Interest Expense_{\tau} + Depreciation_{\tau} + O\&M Expense_{\tau})$			
% Equity Capital * Total Investment + $\Sigma_{\tau=1}^{\perp}$	$(1 + Cost of Equity)^{\tau}$			
Electricity Production _{τ} * (1 – Tax Rate)				
	$\sum \dot{\tau}=1$ (1 + Cost of Equity) ^{τ}			
Where,				
% Equity Capital = portion of the investment funded by equity investors				
O&M Expense = operations and maintenance expenses				
Debt Financing Costs = interest & principal payments on debt				
Depreciation = depreciation on fixed assets				

Cost of Equity = after-tax target equity IRR

2. UNDP DREI Financial Tool

- Excel-based tool to compare the effects and costs of different policy designs to support renewable energy technologies (on-shore wind power)
- Freely downloadable from www.undp.org/DREI

3. Case study – Introduction

- You as a team are asked to assist Country X in designing its RE policy
- Electricity shortages, state-owned Electricity Supply Company (ESC) not in good shape.
- As there are good wind resources, the idea is to design a RE policy that attracts private sector investments into 500MW of on-shore wind power
- An important topic is to use scarce public resources effectively and efficiently
- Two alternative designs will be developed:
 - A cornerstone-instrument only RE policy
 - A public instrument package RE policy
- Both RE policy designs to be compared regarding costs and effects
- We will use the DREI tool and proceed in 4 steps

2. Case study – Intro: Two RE policy designs

Cornerstone instrument only RE Policy

Additional public instruments

3. Case study – Step 1: Modelling the baseline

	la arder to design and	Input	Data
•	In order to design and	Current baseline energy	Hydro: 75%
	compare the two RE	generation mix	Biomass: 10%
	policy designs, a good		Diesel: 15%
	starting point is to analyze	Marginal baseline energy	
	the baseline and model its	generation mix	
	costs	As a percentage:	Hydro: 69%
	In the DDEL to all places		Diesel: 31%
•	In the DREI tool please		
	use the "II. Inputs, Baseline	Most recent 5 private sector	800MW Hydro (4.4 TWh/year)
	Energy Mix" tab and enter	investments in new	15 MW Diesel (0.1 TWh/year)
	the data from the table to	generation:	100 MW Diesel (0.6 TWh/year)
	the right into the		50 MW Diesel (0.3 TWh/year)
	respective vellow cells		150 MW Diesel (0.9 TWh/year)
	respective yenow cons	Emission factors	
(Individual grid emission	Hydro: 0.000 tCO2/Mwhel
	Please proceed	factors:	Diesel: 0.700 tCO2/Mwhel
	in Excel and		
	enter the	Total marginal baseline grid	0.212 tCO2/Mwhel
	numbers	emission factor:	

3. Case study – Step 2: Designing the cornerstone-only RE Policy

Please design a RE policy in which you pick one cornerstone instrument: a feed-in tariff for wind

- In the DREI tool please use the "III. Inputs, Wind Energy" tab and enter the below data into the respective yellow cells
- Specifically refer to the "Pre-Derisking Column" columns

Input	Data
Estimated capacity factor for 500MW of wind	38%
energy	
Investment costs	USD 2 million per MW
Life expectancy of assets	20 years
Cost of equity	18%
Cost of debt	10%
Capital structure	70% debt/30% equity
Loan tenor	12 years
Corporate tax rate (effective)	25%
Administrative costs of the FiT over 20 years	USD 1.7 million

Cornerstone instrument only RE Policy

Select Cornerstone Instrument

PPA-based bidding process

Examples: Feed-in tariff

3. Case study – Step 3: The risk environment in Country X

UN DP

- The investment environment of Country X suffers from many risks
- These drive the financing costs (see below)

3. Case study – Step 3: Designing the instrument-package RE policy

- Please design a RE policy in which you select public instruments which complement the cornerstone instrument (FiT for wind)
- In the DREI tool please use the "III. Inputs, Wind Energy" tab and enter the below data into the yellow cells
- Specifically refer to the "Post Derisking" columns

Risk Category	Estimated Cost	
	\$1,100,000 (above the	
Power Market Risk	administrative costs of	
	the PPA bidding process)	
Permits Risk	\$1,000,000	
Social Acceptance	\$500,000	
Risk		
Resource &	\$1,200,000	
Technology Risk		
Grid Integration	\$1,500,000	
Risk		
Counterparty Risk	\$1,800,000	
Financial Sector	\$800,000	
Risk		

Please proceed in Excel and enter the numbers

Question 4.1:

- How do the on-shore wind LCOE differ between the two RE policy designs?
- And how do the incremental costs (i.e., the additional costs of wind over the baseline) differ?
- What does this imply for the affordability of electricity for the end consumer in Country X?

LCOE and incremental costs

Financing costs differential

Question 4.2:

- What is the difference in financing costs for wind energy between the two RE Policy designs?
 - Cost of equity
 - Cost of debt

Question 4.3:

• How much private sector investment will the RE policy designs trigger?

Question 4.4:

- What are the total public costs of the two alternative RE policy designs?
- What is the breakdown between policy derisking instrument costs and incremental cost (tariff premium)?

Question 4.5:

- How does the investment leverage ratio compare between the two alternative RE policy designs?
- What is the main public cost component that drives the investment leverage ratio in Country X?

Investment Leverage Ratio

Costs of Costs of Wind cornerstone Package RE Investments RE policy policy

Million USD

Savings Leverage Ratio

Costs of additional instruments

Savings Costs of Costs of cornerstone package RE policy RE policy

Question 4.6:

What is the savings leverage ratio of the additional instruments in the public instrument package RE policy?

Question 4.7:

 Over the 20 year lifetime, what are estimated emission reductions that result from the wind energy investment in the two RE policy desings?

Question 4.8:

 What are the carbon abatement costs of both RE policy designs?

D1: Funding the RE Policy

- Who among the main actors (national government, private sector, international donors, etc) could fund the various components in the proposed RE policy designs?
- Which instruments are well suited for MRV, which are less?

D2: The role of fossil fuel subsidies.

• What are the impacts of a 20% diesel fuel subsidy on the costs of both RE policy designs?

Reports & Financial Tool

Available at www.undp.org/DREI