MALAYSIA GENERATING RENEWABLE ENERGY FROM PALM OIL WASTES
MALAYSIA GENERATING RENEWABLE ENERGY FROM PALM OIL WASTES
Soaring energy prices are a reminder of the essential role that affordable energy plays in sustainable economic growth and higher human development. Safeguarding energy supply, especially from clean indigenous resources, has become more pressing than ever. Current patterns of energy generation and use impact negatively on the environment at local, regional and global levels.

The degradation of our environment due to energy production from fossil fuels, have contributed to a global reevaluation of energy use in all economic sectors. The need for sustainable energy use has become more and more evident. As such, renewable energy is envisaged to become an increasing share of Malaysia’s electricity generation. With abundant sources available, such as biomass and biogas, the palm oil industry is likely to become ever more prominent in adopting renewable energy.

In 2002, the government of Malaysia initiated a project Biomass Power Generation and Cogeneration in Palm Oil Industry (BIOGEN) to help promote the use of renewable energy, with support from the United Nations Development Programme (UNDP), the Global Environment Facility (GEF) and the private sector. The project’s primary objective is to develop and implement activities that will build stakeholders’ capacity and facilitate the greater adoption of renewable energy system. It focuses on palm oil industries and the use of waste material in generating electricity in the mills and selling it to the grid where possible. The information presented in this publication provides an indication of the efforts being made and the related policy implications.

This is the fourth of a new series of periodic publications that report on UNDP Malaysia’s work in its energy and environment practice area. The large range of projects being undertaken in this portfolio is designed to support Malaysia’s effort to achieve the Millennium Development Goal 7 (MDG7), of ensuring environmental sustainability. The series of publications and updates on particular project may be accessed through UNDP’s website, http://www.undp.org.my.

I would like to thank the GEF for cofunding this project and Ministry of Energy, Water and Communications (MEWC) for implementing it with UNDP. I would also like to thank other institutional participants and members of the Biogen team (page IX). Special thanks go to the Report Team for their professionalism and good efforts in putting this publication together. I sincerely hope that it will be widely read and will increase awareness of the critical importance of good environmental management on the use of renewable energy.
The project has highlighted a number of important issues and some significant lessons have been learnt. It is hoped that as the project move towards completion, these experiences and the outcomes, in the form of policy development and the demonstration models, will provide exemplars for further steps in renewable energy throughout Malaysia.

Richard Leete Ph.D
Resident Representative
United Nations Development Programme
Malaysia, Singapore & Brunei Darussalam
Contents

Foreword iii

Boxes, Tables, Figures and Map vi

Abbreviations and Acronyms vii

Glossary viii

Participants ix

Global Energy Production and Consumption 1
 World Scenario
 Expanding demand for energy
 Sources of energy
 Problems posed by conventional fuels
 Bioenergy

Malaysia’s Energy Profile 9
 Energy policy
 Configuring a Malaysian response to the global challenge

Palm Oil in the Global Market 12
 The uses and potential of palm oil
 Palm oil production and trade
 Oil palm industry and the environment

The Malaysian Palm Oil Market 15
 Modern commercial development

The Biogen Project 17
 Project strategy
 The anticipated contribution of biomass to power generation
 Implementing biomass power generation and cogeneration
 Key barriers to change
 Operational uncertainties
 Immediate objectives
 Planned outputs
 Full scale model
 Key achievements
 Challenges

Lessons Learnt 29

Sources of Information 31
 Publications
 Internet
Boxes, Tables, Figures and Map

Boxes
Box 1 Renewables
Box 2 Uses of palm oil

Tables
Table 1 Selected renewables indicators for Southeast Asian countries, 2004
Table 2 Final energy demand by source, 2000-2010
Table 3 Status of SREP project, July 2006
Table 4 Area planted in oil palm by ownership, 2006
Table 5 Status of palm oil processing plants, 2006
Table 6 Area planted in oil palm by state, 2006
Table 7 Biomass resources potential, 2005

Figures
Figure 1 Fuel share of world total primary energy supply, 2004
Figure 2 Global sectoral consumption of renewables, 2004
Figure 3 Biomass conversion paths
Figure 4 Global palm oil production and trade, 1961-2006
Figure 5 Average annual growth of palm oil versus other oils and fats, 1996-2006
Figure 6 Palm oil versus soy oil – global production and trade, 1996-2006
Figure 7 Schematic diagram of biomass power generation
Figure 8 Schematic diagram of biogas power generation

Map
Map 1 Graphical representation of the palm oil processing plants, 2006
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAIBE</td>
<td>Akaun Amanah Industri Bekalan Elektrik (MESITA)</td>
</tr>
<tr>
<td>APS</td>
<td>Alternative Policy Scenario (of the International Energy Agency)</td>
</tr>
<tr>
<td>BPMB</td>
<td>Bank Pembangunan Malaysia Berhad (new name for Bank Industri & Teknologi)</td>
</tr>
<tr>
<td>CDM</td>
<td>Clean Development Mechanism (Kyoto Protocol)</td>
</tr>
<tr>
<td>CHP</td>
<td>Combined heat and power</td>
</tr>
<tr>
<td>EFB</td>
<td>Empty fruit bunches</td>
</tr>
<tr>
<td>EPU</td>
<td>Economic Planning Unit</td>
</tr>
<tr>
<td>FELCRA</td>
<td>Federal Land Consolidation and Rehabilitation Authority</td>
</tr>
<tr>
<td>FELDA</td>
<td>Federal Land Development Authority</td>
</tr>
<tr>
<td>FFB</td>
<td>Fresh fruit bunches</td>
</tr>
<tr>
<td>FSM</td>
<td>Full scale model</td>
</tr>
<tr>
<td>GEF</td>
<td>Global Environment Facility</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>GoM</td>
<td>Government of Malaysia</td>
</tr>
<tr>
<td>Gt</td>
<td>Gigatonnes</td>
</tr>
<tr>
<td>GWh</td>
<td>Gigawatt hour</td>
</tr>
<tr>
<td>ha</td>
<td>hectare</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency</td>
</tr>
<tr>
<td>kt</td>
<td>Kilotonne</td>
</tr>
<tr>
<td>KTAK</td>
<td>Kementerian Tenaga, Air dan Kommunikasi (MEWC)</td>
</tr>
<tr>
<td>ktoe</td>
<td>Kilotonnes of oil equivalent</td>
</tr>
<tr>
<td>mb/d</td>
<td>Million barrels per day</td>
</tr>
<tr>
<td>mtoe</td>
<td>Million tonnes of oil equivalent</td>
</tr>
<tr>
<td>MEWC</td>
<td>Ministry of Energy, Water and Communications</td>
</tr>
<tr>
<td>MIEEIP</td>
<td>Malaysian Industrial Energy Efficiency Improvement Project</td>
</tr>
<tr>
<td>MNRE</td>
<td>Ministry of Natural Resources and Environment</td>
</tr>
<tr>
<td>MPIC</td>
<td>Ministry of Plantation Industries and Commodities</td>
</tr>
<tr>
<td>MPOB</td>
<td>Malaysian Palm Oil Board</td>
</tr>
<tr>
<td>MPOC</td>
<td>Malaysia Palm Oil Council</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatt</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>OPEC</td>
<td>Organization of the Petroleum Exporting Countries</td>
</tr>
<tr>
<td>POME</td>
<td>Palm oil mill effluent</td>
</tr>
<tr>
<td>PORIM</td>
<td>Palm Oil Research Institute of Malaysia</td>
</tr>
<tr>
<td>PTM</td>
<td>Pusat Tenaga Malaysia (Malaysia Energy Centre)</td>
</tr>
<tr>
<td>RE</td>
<td>Renewable energy</td>
</tr>
<tr>
<td>REBF</td>
<td>Renewable Energy Business Facility</td>
</tr>
<tr>
<td>REPPA</td>
<td>Renewable energy power purchase agreement</td>
</tr>
<tr>
<td>RISDA</td>
<td>Rubber Industry Smallholders Development Authority</td>
</tr>
<tr>
<td>RSPO</td>
<td>Roundtable on Sustainable Palm Oil</td>
</tr>
<tr>
<td>SCORE</td>
<td>Special Committee on Renewable Energy</td>
</tr>
<tr>
<td>SESB</td>
<td>Sabah Electricity Sdn Bhd</td>
</tr>
<tr>
<td>SREP</td>
<td>Small Renewable Energy Programme</td>
</tr>
<tr>
<td>TNB</td>
<td>Tenaga Nasional Berhad</td>
</tr>
<tr>
<td>UNDP</td>
<td>United Nations Development Programme</td>
</tr>
</tbody>
</table>
Glossary

anaerobic bacterial process without oxygen
bagasse residue of sugar cane crushing
baseload steady flow of power regardless of fluctuating demand
bioenergy energy produced from organic matter
Biogen codename of the project
carotenoids a compound that is a source of vitamin A
cogeneration production of electricity and thermal energy from a common fuel source
co-firing burning of secondary fuel (often renewable energy form) with primary fossil-fuel in power plants
force majeure extraordinary, unforeseen event beyond the control of contracting parties
lignocellulosic woody biomass (timber, wood chips, straw, manure)
mesocarp fleshy part of the fruit between the skin and the kernel
oleochemical chemical derived from oils or fats
primary energy Energy embodied in natural resources before being converted to more convenient forms, such as electricity and gasoline
pyrolysis chemical decomposition of organic materials by heat in the absence of oxygen
Participants

Institutional Participants
Executing Agency
Ministry of Energy, Water and Communications
Government of Malaysia

Implementing Agency
Pusat Tenaga Malaysia

GEF Implementing Agency
United Nations Development Programme

UNDP GEF
Bangkok Regional Office

Donor Partners
AAIBE, The Government of Malaysia

Biogen Team
Dr Anuar Abdul Rahman
National Project Director

Ahmad Zairin Ismail
Deputy Director

Dr. Sanjayan Velautham
Chief Project Coordinator (effective May 2007)

Norasikin Ahmad Ludin
Project Coordinator (until February 2007)

Ghazali Talib
Programme Manager

Mohd Azwan Mohd Bakri
Project Manager

Nor Azaliza Damiri
Project Manager

Mohd Hairol Azlin Abdul Latif
Project Manager

Mazlina Hashim
Project Manager

Zaimul Khalil
Project Manager

Mohd Hafiz Mohd Shuib
Finance Officer (until February 2007)

Saharuddin Savee
Finance Officer (effective Mar 2007)

Haniff Ngadi
Technician
Participants

Report Team
Dr. Sanjayan Velautham Chief Project Coordinator
Ghazali Talib Programme Manager
Professor Warwick Neville University of Auckland, Consultant
Asfaazam Kasbani UNDP Programme Manager

Stakeholders
Economic Planning Unit (EPU)
Ministry of Energy, Water and Communications (MEWC)
Ministry of Natural Resources and Environment (MNRE)
Malaysian Palm Oil Association (MPOA)
Palm Oil Millers Association (POMA)
Malaysian Palm Oil Board (MPOB)
Energy Commission
Bank Pembangunan Malaysia Berhad (BPMB)
Universities
World Scenario

The world is facing two energy related threats:

- lack of sustainable, secure and affordable energy supplies; and
- the environmental damage incurred in producing and consuming ever-increasing amounts of energy.

In the first decade of the twenty-first century, soaring energy prices and destabilizing geopolitical events have been a reminder of the essential role that affordable energy plays in economic growth and human development, and of the vulnerability of the global energy system to supply disruption. Safeguarding energy supplies is an international priority, yet current patterns of energy supply and consumption themselves carry the threat of irreversible environmental damage.

The need to curb growth in fossil energy demand, to increase geographic and fuel supply diversity, and to mitigate climate destabilizing emissions such as greenhouse gases, is more pressing than ever. United Nations’ member countries have begun taking initiatives on developing alternative energy scenarios and strategies aimed at a more sustainable and cleaner energy future. The Commission for Sustainable Development (UNCSD) for example, responsible for reviewing progress in the implementation of Agenda 21 and the Rio Declaration on Environment and Development, discusses the use of renewable energy in length and reaffirms commitments by member countries in adopting it where possible. UN Framework on Convention on Climate Change (UNFCCC), started in 1994, sets an overall framework for intergovernmental efforts to tackle the challenge posed by climate change and recognizes that the climate system is a shared resource whose stability can be affected by industrial and other emissions of carbon dioxide and other greenhouse gases. The use of renewable energy is further encouraged as the energy sector is
the main culprit in GHG emissions. Kyoto Protocol (started in 1997), strengthens the Convention by committing Annex I Parties to individual, legally-binding targets to limit or reduce their greenhouse gas emissions and the implementation of renewable energy system remains as the most feasible and popular options available.

For the G8 nations, the International Energy Agency (IEA) was requested to prepare a strategy in the form of an Alternative Policy Scenario (APS) that proposes policies and measures for the consideration of governments in order to significantly reduce the rate of increase in energy demand and emissions. The economic cost of these policies, put forward in 2006\(^1\), would be more than outweighed by the economic benefits that would accrue from producing and using energy more efficiently.

With worldwide adoption of stricter environmental standards and guidelines for greenhouse gas emissions, it is becoming clear that renewable energy systems will be credited for their inherent advantage in lowering emissions. These environmental benefits will contribute towards making the delivered costs more palatable and are already the driving force behind policy initiatives in many more advanced countries.

Whether governments of OECD or non-OECD countries will adopt the Alternative Policy Scenario or some elements of it remains to be seen: huge obstacles, ranging from powerful vested interests to public indifference, will have to be overcome. Reconciling the goals of energy security and environmental protection requires strong and coordinated government action and public support.

Meanwhile, fossil fuel demand and greenhouse gas emissions continue on their current unsustainable trajectories. In the following sections, the magnitude and implications of these continuing trends are more fully explored.

Expanding demand for energy

Between 2006 and 2030, unless strong and coordinated government action and public support significantly modify recent trends, global primary energy demand is projected to increase by just over half, or at an annual rate of 1.6%. Over 70% of that increase in demand will be from developing countries, China alone accounting for nearly 30%. This represents a significant shift in the centre of gravity of global energy demand towards countries that are experiencing faster economic (and often population) growth than more advanced countries such as those in the Organisation for Economic Co-operation and Development (OECD).

Sources of energy
Globally, fossil fuels are predicted to remain the dominant source of energy to 2030, accounting for 83% of the overall increase in energy demand between 2004 and 2030. Consequently, their share of total world demand edges up from 80% to 81%. Among fossil fuels, the share of oil is predicted to drop, although oil still remains the largest single fuel in the global energy mix by 2030. Global oil demand, 84 million barrels per day (mb/d) in 2005, is expected to reach 99 mb/d by 2015, and 116 mb/d in 2030.

Coal as an energy source is expected to record the greatest increase in demand in absolute terms and will remain the second largest primary fuel, its share in global demand increasing slightly. China and India alone account for almost 80% of the incremental demand for coal. The share of natural gas is also expected to increase, despite rising prices.

Hydropower’s share of primary energy rises slightly, while that of nuclear power is expected to fall. The share of biomass falls marginally, as developing countries switch to using modern commercial energy, offsetting the growing use of biomass as feedstock for biofuels production and for power and heat generation. Non-hydro renewables—including wind, solar and geothermal—grow quickest but from a low base.

In 2004, renewables accounted for 13.1% of the 11,059 million tonnes of oil equivalent (mtoe) of world total primary energy supply (Figure 1). Combustible renewables and waste (97% of which is biomass, both commercial and non-commercial) represented 79.4% of total renewables followed by hydro (16.7%). Renewable energies (‘renewables’) are essential components in the global energy portfolio as they contribute to world energy supply security, reducing dependence on fossil fuel resources, and providing opportunities for mitigating greenhouse gases (Box 1).

In ASEAN countries, renewable energy is already in the generation mix as indicated in Table 1. Most of sources come from hydro, biomass and geothermal.

Challenges
- Nearly one-third of the world’s population do not yet have electricity or other modern forms of energy supply, and a second third have only limited access;
- Sources of energy are frequently long distances from the point of consumption, resulting in inefficiencies and wastage;
- Almost half of the increase in global primary energy use goes to generating electricity and 20% to meeting transport needs – almost entirely in the form of oil-based fuels;
- Coal, used mainly for power generation, is expected to be the energy source for which growth in demand will be greatest; this implies that mitigating emissions will be an ever greater challenge.
The principal constraint in advancing commercial renewable energy over recent decades has been cost-effectiveness. With the exception of large hydropower, combustible biomass and larger geothermal projects, the average costs of renewable energy are generally not competitive with wholesale electricity and fossil fuel prices. Problems posed by conventional fuels

Economic and security issues
Rising oil and gas demand, if unchecked, would accentuate the consuming countries’ vulnerability to severe supply disruption and associated price escalation. Most developed countries and developing Asian countries are becoming increasingly dependent on
imports as their indigenous production fails to keep pace with demand. Non-OPEC production of conventional crude oil and natural gas liquids is expected to peak by about 2015. By 2030, OECD countries will be importing two-thirds of their oil needs compared with 56% in 2005. A large proportion of the additional imports will originate in the Middle East and be transported along lengthy and vulnerable maritime routes. The concentration of oil production in a small group of countries with large reserves, notably the Middle East OPEC members and Russia, will increase their market dominance and ability to impose higher prices. An increasing share of gas demand is also expected to be met by imports, via pipeline or in the form of liquid natural gas shipped from distant suppliers.

Although most oil-importing economies around the world have continued to grow strongly, they would almost certainly have grown even more rapidly had the price of oil and other forms of energy not increased. The longer prices remain high or rise further, the greater the threat to economic growth in all importing countries. The growing insensitivity of oil demand to price accentuates the potential impact of a supply disruption on international oil prices. In particular, the share of transport demand in global consumption is projected to rise, and as a result, oil demand can be expected to become less and less responsive to movements in international crude oil prices.

Environmental issues

If present production and consumption patterns continue, global energy related to carbon dioxide (CO₂) emissions will increase by 14 gigatonnes (Gt), or 55%, to 40 Gt, between 2004 and 2030, a rate of 1.7% per year. Power generation contributes half of this increase in global emissions. Coal overtook oil in 2003 as the leading contributor to global energy related CO₂ emissions and consolidates its position through to 2030. Emissions are projected to grow slightly faster than primary energy demand, a reversal of the trend evident since 1980, because of the increase in the

Table 1 Selected renewables indicators for Southeast Asian countries, 2004

<table>
<thead>
<tr>
<th>Country/Continent</th>
<th>TPES A Mtoe²</th>
<th>A %</th>
<th>B %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brunei Darussalam</td>
<td>2.7</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Indonesia</td>
<td>174.0</td>
<td>30.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Malaysia</td>
<td>56.7</td>
<td>5.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Philippines</td>
<td>44.3</td>
<td>45.6</td>
<td>21.6</td>
</tr>
<tr>
<td>Singapore</td>
<td>25.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Thailand</td>
<td>97.1</td>
<td>16.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Vietnam</td>
<td>50.2</td>
<td>50.2</td>
<td>3.0</td>
</tr>
<tr>
<td>Asia</td>
<td>1,289.4</td>
<td>31.8</td>
<td>2.4</td>
</tr>
<tr>
<td>World</td>
<td>11,058.6</td>
<td>13.1</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Notes:

- A Share of total renewables in TPES.
- B Share of renewables excluding combustible renewables and waste.
- 1 Total primary energy supply.
- 2 Million tonnes of oil equivalent.

average carbon content of primary energy consumption.

Developing countries account for over three-quarters of the increase in global CO₂ emissions between 2004 and 2030. They overtake developed countries as the biggest emitters soon after 2010. China alone is expected to be responsible for about 39% of the increase in global emissions as a consequence of strong economic growth and heavy reliance on coal in power generation and industry, and will overtake the United States as the world’s biggest emitter by 2010.

Bioenergy

Traditional uses of biomass

In 2005, 2.5 billion people used firewood, charcoal, agricultural waste and animal dung to meet most of their daily energy needs for cooking and heating. In many countries, these resources account for over 90% of total household energy consumption. The inefficient and unsustainable use of biomass has severe consequences for health, the environment and economic growth. As such, about 1.3 million people, mostly women and children, die prematurely every year because of exposure to indoor air pollution from biomass. The high prices of alternative fuels on international and domestic markets largely preclude a significant shift to cleaner, more efficient ways of cooking and heating.

By 2015, the number of people using biomass for essential domestic purposes is expected to rise to 2.6 billion, and to 2.7 billion by 2030 as population numbers increase. This means that one-third of the world’s population will still be relying on
biomass fuels, a share barely smaller than in 2005.

Halving the number of households using biomass for cooking by 2015, a recommendation of the United Nations Millennium project, would involve 1.3 billion people switching to liquefied petroleum gas and other commercial fuels. This would not have a significant impact on world oil demand and the equipment would cost less than US$1.5 billion per year. Vigorous concerted government action, with support from industrialised countries, would be needed to achieve this target, together with increased funding from both public and private sources. Policies would need to address barriers to access, affordability and supply, and to form a central component of broader development strategies.

Modern forms and uses of biomass

Biomass is attractive for use either as a stand-alone fuel or in fuel blends, such as co-firing wood with coal, or mixing ethanol or biodiesel with conventional petroleum based fuels. Anaerobic digestion has major potential in countries with ample resources. Electricity generated from biomass is based on steam turbine technology. Many regions of the world still have large untapped supplies of biomass residues that could be converted into competitively priced electricity using steam turbine power plants.

Biomass combustion for heat and power is a fully mature technology. It offers both an economic fuel option and a ready disposal mechanism for agricultural, industrial and municipal wastes. However, the industry has remained relatively stagnant even though demand for biomass (mainly wood) continues to grow in many developing countries. One of the problems of biomass is that material directly combusted in cooking stoves produces pollutants, leading to severe health and environmental consequences, although improved cooking stove programmes are alleviating some of these effects. A second issue is that burning biomass emits CO₂, even though biomass combustion is generally
considered to be ‘carbon-neutral’ because carbon is absorbed by plant material during its growth, thus creating a carbon cycle.

Biomass can be burnt (or co-fired) to produce electricity and steam in a CHP plant via a steam turbine in dedicated power plants. The typical size of these plants is ten times smaller (less than 100 MW) than coal fired plants because of the limited availability of local feedstock and high transportation costs. Fossil energy consumed for bio-power production using forestry and agriculture products can be as low as 2-5% of the final energy produced. Based on life-cycle assessment, net carbon emissions per unit of electricity can achieve below 10% of the emissions from fossil fuel based electricity.

Biofuels

Biofuels are expected to make a significant contribution to meeting global road transport energy needs. They are estimated to account for 4% of road fuel consumption by 2030, up from 1% in 2005; under the IEA’s APS, consumption could be as high as 7%. The United States, European Union and Brazil are likely to remain the leading producers and consumers of biofuels. Ethanol is expected to account for most of the increase in biofuel use worldwide, as production costs are expected to fall faster than those of biodiesel, the other main biofuel.

Rising food demand, which competes with biofuels for existing arable and pasture land, will constrain the potential for biofuel production using current technology. In 2005, about 14 million hectares of land were used for the production of biofuels, equal to about 1% of the world’s available arable land.

This share is expected to rise to 2% by 2030, but if the policies of the APS are adopted, this would amount to 3.5%. The minimal amount of arable land needed in 2030 is equal to more than that of France and Spain, and under the APS would equate to all the arable land in the OECD countries.

New biofuels technology currently being developed, such as lignocellulosic ethanol (Figure 3), could allow biofuels to play a much bigger role than currently foreseeable. However, significant technological challenges still need to become commercially viable. Trade and subsidy policies will be critical factors in determining where and with what resources and technologies biofuels will be produced in coming decades, the burden of subsidies on taxpayers and the cost-effectiveness of biofuels as a way of promoting energy diversity and reducing carbon-dioxide emissions.
Energy policy

The crucial role of energy in achieving Malaysia’s development aspirations has long been recognized, particularly in the country’s five-year plans. An early benchmark was the establishment in 1974 of Petronas Nasional Berhad (PETRONAS) as the national oil company responsible for the exploration, development, refining, and marketing of Malaysia’s petroleum products. This development, of major significance to the country’s economy, has been followed by the formulation of several important policies reflecting the issues challenging the government and the economy.

In keeping with the policies developed over the last four decades, the energy sector is focused on ensuring a secure, reliable and cost-effective supply of energy, aimed at enhancing the competitiveness and resilience of the economy. The Ninth Malaysia Plan 2006-2010 encourages energy efficiency, especially in transport, commercial and industrial sectors, and in government buildings, and aims to diversify fuel sources through greater utilization of renewable energy.

In Malaysia, the transport sector is the largest consumer of energy accounting for 40.5% of the total final commercial energy demand in 2005, followed by the industrial sector (38.6%) and the residential and commercial sector (13.1%), all expected to increase demand by over 6% during the 2006-2010 period.

Electricity accounts for about 19% of the total final energy demand in Malaysia (Table 2). Reported electricity generation does not include electricity generated directly by industrial consumers for their own use. In response to the Government of Malaysia’s policy, the fuel mix for electricity generation is gradually being modified, with the share of natural gas in particular being

<table>
<thead>
<tr>
<th>Policy / Plan</th>
<th>Broad Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975 National petroleum policy</td>
<td>Introduced to ensure optimal use of petroleum resources, regulation of ownership and management of the industry, and economic, social, and environmental safeguards in the exploitation of this valuable resource.</td>
</tr>
<tr>
<td>1979 National energy policy</td>
<td>Formulated to achieve supply, utilization and environmental objectives.</td>
</tr>
<tr>
<td>1980 National depletion policy</td>
<td>Introduced to guard against over-exploitation of oil and gas.</td>
</tr>
<tr>
<td>1981 Four fuel diversification policy</td>
<td>Emphasis given to fuel diversification, designed to avoid dependence on oil; aimed at placing increased emphasis on gas, hydro and coal.</td>
</tr>
<tr>
<td>2000 Renewable energy as the fifth fuel policy</td>
<td>Introduced in recognition of the potential of biomass, biogas and other renewable energy resources.</td>
</tr>
<tr>
<td>2006 National Biofuel Policy</td>
<td>Designed to pave the way for extensive development of the biofuels industry.</td>
</tr>
</tbody>
</table>
reduced to about 56% by 2010, and coal increased substantially to 36.5% (from just 8.8% in 2000).

Under the Ninth Malaysia Plan 2006-2010, it was estimated that demand for electricity will reach 20,087 MW in 2010. Renewable energy is expected to contribute 350 MW to the total energy supply by that time: about 300 MW of RE is expected to be generated and connected to the grid in Peninsular Malaysia, and 50 MW to the grid in Sabah.

Configuring a Malaysian response to the global challenge

The increasing demand for fossil fuels, despite their proportional decline, poses a major challenge for the Government of Malaysia. Given the continuation of existing trends, the power sector was forecast to increase GHG emissions by 30% between 1995 and 2005. The two other ongoing UNDP-GEF funded Malaysian Industrial Energy Efficiency Improvement Project (MIEEIP) and the Building Integrated Photovoltaics (BIPV) are the manifestation of Malaysia’s commitment to reduce GHG emissions. The Biogen project aims to further mitigate these by progressively replacing fossil fuels used in electricity generation mix with renewable energy resources, especially utilising wastes from the palm oil industry.

In 2001, in a significant step towards encouraging and intensifying the utilisation of renewable energy (RE) in power generation, the Malaysian government launched the Small Renewable Energy Power (SREP) programme. The objective was to encourage the private sector to undertake small power generation projects using renewable resources including biomass, biogas, municipal waste, solar, mini-hydro, and wind energy.

As recently as 2004, the programme was not progressing well due to the uncertainty of long-term fuel supplies, long negotiation of the Renewable Energy Power Purchase Agreement (REPPA) and difficulty in securing loans to finance the projects. However, in 2005, the first grid connected biomass-based power plant in Malaysia,

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>2000</th>
<th>2005</th>
<th>2010</th>
<th>Per cent of Total</th>
<th>Average Annual Growth Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum products</td>
<td>820.0</td>
<td>1,023.1</td>
<td>1,372.9</td>
<td>65.9</td>
<td>62.7</td>
</tr>
<tr>
<td>Natural gas</td>
<td>161.8</td>
<td>246.6</td>
<td>350.0</td>
<td>13.0</td>
<td>15.1</td>
</tr>
<tr>
<td>Electricity</td>
<td>220.4</td>
<td>310.0</td>
<td>420.0</td>
<td>17.7</td>
<td>19.0</td>
</tr>
<tr>
<td>Coal and coke</td>
<td>41.5</td>
<td>52.0</td>
<td>75.0</td>
<td>3.4</td>
<td>3.2</td>
</tr>
<tr>
<td>Total</td>
<td>1,243.7</td>
<td>1,631.7</td>
<td>2,217.9</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Per capita consumption²</td>
<td>52.9</td>
<td>62.2</td>
<td>76.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Malaysia Plan 2 Gigajoules
2 Source: Ninth Malaysia Plan 2006-2010.
TSH Bio-Energy Sdn Bhd, commenced operations in Sabah which has an installed capacity of 14 MW where 10MW is for the grid-connection.

Under the SREP guidelines, maximum power export capacity of a small RE plant for sale to the grid is limited to 10 MW, although a plant’s overall capacity may be larger. The Special Committee on RE (SCORE), set up under the Ministry of Energy, Water and Communications, coordinates the implementation of the SREP applications and also formulates government’s strategy to intensify the development of RE as the country’s fifth fuel resource. A technical secretariat was also set up at the Energy Commission (Suruhanjaya Tenaga) to help facilitate the industry’s participation in the programme.

The status of generating power from renewable energy sources is immense (Table 3), and by far the most easily accessible and cost-effective feed-stock is readily available in the form of palm oil residues. Traditionally palm oil mills have utilized a proportion of this material to generate the requisite heat and power for extracting oil from the fruit, but huge additional quantities of residues pose a serious disposal problem for the industry. Efficient methods of generating CHP to meet operating requirements, plus a surplus of electricity utilizing the surplus renewable residues for export to the national grid, represents a double benefit for the industry and for the country, while assisting in the reduction of emissions from fossil fuels. In addition, palm oil itself is already being used on a small scale as a biofuel supplement to fossil fuels and more efficient technologies are being developed for this purpose. The palm oil industry therefore has considerable potential for supporting the economy through the provision of renewable energy as well as through the traditional export of agricultural commodities.

<table>
<thead>
<tr>
<th>Broad Category</th>
<th>Specific type of renewable energy</th>
<th>Number of projects</th>
<th>Capacity (MW) for grid connection</th>
<th>Contribution %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass</td>
<td>– empty fruit bunches</td>
<td>15</td>
<td>103.2</td>
<td>42.3</td>
</tr>
<tr>
<td></td>
<td>– wood waste</td>
<td>1</td>
<td>6.6</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>– rice husks</td>
<td>1</td>
<td>10.0</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>– municipal waste</td>
<td>4</td>
<td>25.0</td>
<td>10.2</td>
</tr>
<tr>
<td>Landfill gas</td>
<td></td>
<td>3</td>
<td>6.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Mini hydro</td>
<td></td>
<td>23</td>
<td>93.2</td>
<td>38.2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>47</td>
<td>244.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The first grid-connected biomass power plant

The first grid connected biomass based power plant in Malaysia started commercial operation early in 2005. TSH Bio-Energy Sdn Bhd, located in Tawau, Sabah, has an installed capacity of 14 MW and is contracted to sell 10MW to Sabah Electricity Sdn Bhd (SESB) for 21 years. The cogeneration plant processes palm oil milling residues (mainly empty fruit branches) as fuel.

The Energy Commission

The Energy Commission (Suruhanjaya Tenaga) was established under the Energy Commission Act 2001 to regulate the electricity supply and piped gas supply industries in Peninsular Malaysia and Sabah, whilst in Sarawak the state Chief Electrical Inspectorate is the regulator of the electricity supply industry under the Electricity Ordinance of Sarawak. It acts as the SREP technical secretariat.
The uses and potential of palm oil

Palm oil is the second most traded vegetable oil crop in the world after soy, and over 90% of the world’s palm oil exports are produced in Malaysia and Indonesia. Palm oil is still mostly used as an ingredient in the manufacture and further processing of food products (Box 2), but many other uses are becoming increasingly important. In the twenty-first century, concern for serious environmental issues is offering new

Box 2 Uses of palm oil

Palm oil can be used –

As an edible oil:
- a high quality cooking oil
- a component of oil-based fats and margarine used in baking
- an ingredient in wide range of cooking materials, dairy fat substitutes, milks and ice creams
- a fat ingredient in animal feed

As an ingredient for non-edible uses:
- soaps
- biodegradable detergents
- oleochemical products (fatty esters, fatty alcohol, fatty nitrogen compounds, glycerol)

For non-edible applications:
- drilling mud for the oil industry
- epoxidated oil as a plastifier and sterilizer in the plastics industry (PVC)
- gum
- candles
- cosmetics
- printing inks
- metallic soaps for the manufacturing of lubricating greases and metallic driers
- fuels
- greases for lubrication and protection
- cold rolling presses in steel making
- tinplate rolling
- acids to lubricate fibres in the textile industry
opportunities for diversification of oil palm products. In particular, palm oil based biofuel provides a high quality supplementary fuel for blending with fossil fuels such as petroleum to help meet the growing renewable energy demand emerging in developed countries, especially those of the European Union. Nor is this the only contribution the industry can make to renewable energy: as noted earlier, residue biomass from milling greatly exceeds the quantities required for heat and power to carry out palm oil processing, and the surplus residues can be utilized to generate electricity for the national grid.

Palm oil production and trade

Global palm oil production and trade have risen steeply and continuously (Figure 4) from the 1970s onwards, with average growth rates achieved by oil palm substantially exceeding those of other oils and fats. Factors that explain the interest of the global marketplace in palm oil include:

- the high level of substitutability with other soft oils;
- a high melting point and a low content of trans fatty acids, of special appeal to the food industry;
- reconfirmed health benefits, notably as a rich source of carotenoids.

As a consequence, the share of palm oil in global vegetable oil production more than doubled in the period 1983-2003. This development was accompanied by a strong rise in both the share and overall consumption of palm oil in the global vegetable oil market (Figure 5).

The main competitor for palm oil is soy oil. Only in very recent years has the global output of palm oil matched that of soy, whereas for trade, global shipments of palm oil surpassed soy oil in the mid-1970s, and in 2006 palm oil exports were almost double those of soy oil (Figure 6).

A further distinctive feature of palm oil is its very high trade-to-production ratio, which refers to the amount of global production that enters international trade. The ratio for palm oil greatly exceeds that
for other oils and fats, oilseeds and other crops in general. This is particularly significant given that just two countries – Malaysia and Indonesia – account for about 90% of both global production and global trade in palm oil.

Oil Palm Industry and the Environment
Throughout its entire development in Malaysia, the oil palm industry has always been linked to the environment. As it is a very land intensive industries, any unplanned development will lead to the degradation of the forest systems (primary or secondary), loss of habitats (plants and animals), extreme land degradation and pollution (water and airborne) due to the use of large quantities of pesticides and herbicides required to maintain the plantation. Besides that, the mills too produce wastes mainly from the EFB and palm oil mill effluent. As such, with the support from the government and MPOC, the Roundtable for Sustainable Palm Oil (RSPO) was established. RSPO consists of palm oil producers, processors, traders, consumer goods manufacturers, retailers and non-governmental organizations (NGOs) and is tasked to develop the principles and criteria of a sustainable palm oil industry, and facilitate the development of sustainable palm oil production. Among the proposed guidelines include commitment to transparency, compliance with all applicable local, national and ratified international regulations, adoption of sustainable cultivation practices (including water management, pesticide control and soil erosion), conservation of resources and biodiversity and community development. Nevertheless, the industry has long avoided the openings of virgin forest land, which thus minimize environment degradation and enhance the sustainability of oil palm growing. In addition to the current initiatives, the RM20 million Malaysian Palm Oil Conservation Fund (MPOCF) was announced by MPIC in 2006, aims to help protect affected wildlife (including orang utan and other protected species) and to sustain biodiversity conservation programmes that are expected to be beneficial to both the industry and society.

Figure 6 Palm oil versus soy oil – global production and trade, 1961-2006

Source: Thoenes, P. (2007) Biofuels and Commodity Markets – Palm Oil Focus, FAO, Fig. 6.
The oil palm is indigenous to West Africa, but the development of oil palm as a plantation crop started in Southeast Asia. Experimental planting began in Peninsular Malaysia in the late nineteenth century and the first commercial oil palm estate was established in Selangor in 1917. During the plantation development phase to about 1960, expansion was relatively slow reaching about 55,000 ha and, primarily because of processing difficulties, cultivation was not widely undertaken by smallholders. Large-scale expansion commenced during the 1960s, mainly in response to the government's diversification policy which aimed to reduce the dependence of the national economy on natural rubber. Rubber prices were continuing to decline, there was mounting competition from synthetic rubber, and the demand for edible oils was expanding.

Modern commercial development

Expansion of processing plant in the estate sector and the establishment of processing cooperatives, together provided the means for efficient processing of both plantation and smallholder palm oil production. The Federal Land Development Authority (FELDA) was a key player in the government’s implementation of its diversification and smallholder land settlement policies and is still the largest producer in the industry, owning over 16% of the total planted area (Table 4).

All states in Malaysia produce palm oil but there is wide variation in the crop’s distribution. Over 75% of total area planted is located in just four states, Sabah, Johor, Pahang and Sarawak, each of which has over half a million hectares under cultivation. Of the 4,165,215 ha planted in 2006, 3,703,254 or 88.9% is classified as ‘mature’ and in production (Table 5 and 6).

As a front runner in the development of the oil palm industry, Malaysia has had to develop many of the agricultural and industrial technologies required for the oil palm industry to succeed, including a significant R&D capability. For many decades this relied primarily on the ability of the larger companies to carry out their own research.
Experimentation enabled these companies to enhance their planting materials, carry out agronomic trials, conduct pest and disease research, and design machines for mechanizing some field operations.

The processing of oil palm products occurs in palm kernel crushing factories, oleochemical plants, and palm oil refineries, but by far the most common are the basic palm oil mills. With the plantations they serve, these mills form the fundamental operational units and the basis of this important Malaysian export industry that supplies global markets and has the capability of contributing very significantly to the reduction in GHGs through expanded production of biofuels and biomass based generation of power.

In 1979, the Malaysian government established the Palm Oil Research Institute of Malaysia (PORIM), which was charged with the responsibility of generating information, increasing production and processing efficiency, and expanding uses of palm oil through research and development. This function was taken over by the Malaysian Palm Oil Board (MPOB) when earlier agencies were amalgamated and is partly funded from a research cess imposed on palm oil millers. Efforts are made to ensure that R&D in the MPOB is in line with the industry’s needs and that research findings are disseminated to the industry and offered for commercialisation.

Table 5 Status of palm oil processing plants, 2006

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Palm oil mills¹ No.</th>
<th>Palm oil refineries² No.</th>
<th>Palm kernel crushing factories³ No.</th>
<th>Oleochemical plants⁴ No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating</td>
<td>397</td>
<td>517</td>
<td>38</td>
<td>17</td>
</tr>
<tr>
<td>Inoperative</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Planned</td>
<td>21</td>
<td>12</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>425</td>
<td>66</td>
<td>53</td>
<td>20</td>
</tr>
</tbody>
</table>

1 Tonnes FFB/year 2 Tonnes/year 3 Tonnes kernel/year 4 Tonnes/year

Table 6 Area planted in oil palm by state, 2006

<table>
<thead>
<tr>
<th>State</th>
<th>Hectares</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johor</td>
<td>671,425</td>
<td>16.1</td>
</tr>
<tr>
<td>Pahang</td>
<td>623,290</td>
<td>15.0</td>
</tr>
<tr>
<td>Perak</td>
<td>348,000</td>
<td>8.4</td>
</tr>
<tr>
<td>Terengganu</td>
<td>164,065</td>
<td>3.9</td>
</tr>
<tr>
<td>Negeri Sembilan</td>
<td>161,972</td>
<td>3.9</td>
</tr>
<tr>
<td>Selangor</td>
<td>128,915</td>
<td>3.1</td>
</tr>
<tr>
<td>Kelantan</td>
<td>94,542</td>
<td>2.3</td>
</tr>
<tr>
<td>Kedah</td>
<td>76,329</td>
<td>1.8</td>
</tr>
<tr>
<td>Melaka</td>
<td>52,232</td>
<td>1.2</td>
</tr>
<tr>
<td>Pulau Pinang</td>
<td>14,119</td>
<td>0.3</td>
</tr>
<tr>
<td>Perlis</td>
<td>258</td>
<td>0.0</td>
</tr>
<tr>
<td>Peninsular Malaysia</td>
<td>2,334,247</td>
<td>56.0</td>
</tr>
<tr>
<td>Sabah</td>
<td>1,239,497</td>
<td>29.8</td>
</tr>
<tr>
<td>Sarawak</td>
<td>591,471</td>
<td>14.2</td>
</tr>
<tr>
<td>East Malaysia</td>
<td>1,830,968</td>
<td>44.0</td>
</tr>
<tr>
<td>MALAYSIA</td>
<td>4,165,215</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The Biogen project is jointly funded by the Government of Malaysia (GoM), the United Nations Development Programme (UNDP), the Global Environment Facility (GEF), and the Malaysian private sector. Pusat Tenaga Malaysia (PTM) is the implementing agency under the executing agency, the Ministry of Energy, Water and Communications (MEWC).

Project strategy

The Biogen project strategy involves a number of activities and deliverables that aim to remove barriers to the utilisation of commercially viable biomass based power generation through CHP production in palm oil mills. The ultimate desired outcome is the implementation of a demonstration scheme showcasing a full scale model (FSM) of biomass based power generation with CHP in conjunction with a POME derived biogas system. While biomass utilisation is well established, the project is intended to have a capacity building outcome, encouraging a substantial increase in biomass based power generation.

Central to the project strategy is the establishment of an institutional awareness, responsibility and capacity within the Government of Malaysia as represented by MEWC, PTM and MPOB for identifying and removing barriers to the implementation of

The broad objective of the Biogen project is the reduction in the growth rate of greenhouse gas emissions from fossil fuel fired activities and from the decomposition of unused biomass waste from palm oil mills (Map 1). This is to be achieved through the removal of the major barriers to the development of biomass based combined heat and power projects to supplant part of the current fossil fuel electricity generation in Malaysia. Explicitly, the aim of the Biogen project is to reduce the growth rate of greenhouse gas emissions from fossil fired combustion processes by 3.8% by the end of 2008.

The Biogen project development objective

The broad objective of the Biogen project is the reduction in the growth rate of greenhouse gas emissions from fossil fuel fired activities and from the decomposition of unused biomass waste from palm oil mills (Map 1). This is to be achieved through the removal of the major barriers to the development of biomass based combined heat and power projects to supplant part of the current fossil fuel electricity generation in Malaysia. Explicitly, the aim of the Biogen project is to reduce the growth rate of greenhouse gas emissions from fossil fired combustion processes by 3.8% by the end of 2008.
these measures in the Malaysian palm oil industry. On the technical and business side, capacity will be established for specialist support and financial assistance. PTM, Bank Pembangunan Malaysia Bhd, and MPOB were designated as the agencies responsible for particular aspects, with the institutional focus located in PTM which has a coordinating role for the project.

The anticipated contribution of renewable energy sources to power generation

As noted earlier, Malaysia has abundant biomass waste resources coming mainly from palm oil, wood and agricultural industries. At the time of the initiation of the project in 1999, a total capacity of about 665 MW was to be expected if the estimated overall potential of about 20.8 million tonnes of biomass residues from these main sources plus the 31.5 million m³ of palm oil effluents (POME), were used for power generation and cogeneration.

These quantities of biomass have expanded significantly since the project’s rationale was developed, as shown for 2005 in Table 7. From those data it is estimated that a total of about 2,500 MW capacity can be expected if all potential of the 25 million tonnes of biomass residues from these main sources, in addition to the 39 million m³ of palm oil mill effluents (POME), is used for power generation and cogeneration. In terms of additional potential, there is also a substantial amount of unexploited biomass waste in the form of logging residues, rice straw, palm tree trunks and other residues.

Table 7 Biomass resources potential, 2005

<table>
<thead>
<tr>
<th>Type of industry</th>
<th>Production</th>
<th>Residue</th>
<th>Residue generated</th>
<th>Potential electricity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kt</td>
<td>Empty fruit bunches</td>
<td>12,300</td>
<td>570</td>
</tr>
<tr>
<td>Oil palm</td>
<td>59,800</td>
<td>Fibres</td>
<td>8,750</td>
<td>1,080</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shells</td>
<td>3,940</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Solid</td>
<td>24,490</td>
<td>2,200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Others (POME)</td>
<td>38,870</td>
<td>330</td>
</tr>
<tr>
<td>Padi</td>
<td>2,141</td>
<td>Rice husks</td>
<td>471</td>
<td>72</td>
</tr>
<tr>
<td>Sugar</td>
<td>1,111</td>
<td>Padi straw</td>
<td>856</td>
<td>83.9</td>
</tr>
<tr>
<td>Wood</td>
<td>2,937,679 m³</td>
<td>Sawn timber</td>
<td>1,692,718m³</td>
<td>50.11</td>
</tr>
<tr>
<td></td>
<td>523,336</td>
<td>Plywood & veneer</td>
<td>121,000m³</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>147,813</td>
<td>Moulding</td>
<td>75,600m³</td>
<td>2.2</td>
</tr>
<tr>
<td>Municipal solid waste</td>
<td>11,940 tonnes</td>
<td>Municipal solid waste</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Note: Waste from rice mills is mainly rice husks; palm oil mill waste includes empty fruit bunches; wood waste comprises chips, shavings and sawdust. Palm trunk and fronds, and logging waste left in the cutover forest areas are not included. The potential annual electricity production and power generation capacity were computed on the assumption that all the available biomass resources listed were fully utilized.
The palm oil industry accounts for the largest biomass waste production in Malaysia, and since the 1960s, all palm oil mills have depended on their own biomass wastes for fuel, mainly the palm kernel shells and mesocarp fibres. Not only does palm oil industry waste, including POME, represent the largest potential for biomass energy utilisation in the country, but this resource is readily available and in need of an efficient and effective means of disposal. When the project was being planned, most of these residues were disposed of through incineration and dumping, with only a very small proportion being used by the mills in a rather inefficient manner for their own heat and power requirements. However, the government has banned the incineration of biomass waste (mainly empty fruit bunches or EFB), and so the mills are obliged to find alternative means of disposing of the unutilized waste.

Other value-added uses of the waste have been investigated with varying degrees of success, but commercialisation of these is not imminent. While palm oil mills with plantations can use their solid biomass waste for mulching and soil conditioning or fertiliser, those without plantations are considering generating electricity that they can sell to the national utility grid. Although palm oil mills are aware of the potential of biogas generated from the biodegradation of POME, they are not currently utilising this gas as there is no requirement to do so and there is little local experience in handling it.

Since the palm oil mills have abundant biomass waste resources, their energy systems were designed to be cheap rather than efficient. Most of the existing biomass combustion systems in Malaysia utilize low efficiency low-pressure boilers where the overall cogeneration efficiency is less than 40%. An additional source of energy in palm oil mills is the biogas produced in the anaerobic decomposition (for wastewater treatment purposes) of palm oil mill effluent (POME). However, at that time, POME derived biogas (mostly methane, \(\text{CH}_4 \)) was
not being recovered and used but allowed to dissipate into the atmosphere.

Commercially proven technologies were available in the form of high-pressure boilers for efficient production of power and heat from the biomass resources available. Dual fired boilers capable of burning either diesel oil or natural gas were identified as most suitable for burning palm oil waste since they could also facilitate the use of POME derived biogas as a supplementary fuel.

Key barriers to change

Whilst the concept of biomass based CHP generation for sale to the grid or other consumers is well accepted, lack of experience and a number of barriers have hindered its development.

Key barriers to the development of CHP generation in Malaysia that the project was attempting to overcome, included the following:

- Lack of information services to promote biomass energy development and its applications, which includes,
 - a misconception that the technology is unproven;
 - the belief that the industry lacks the requisite technical ability;
 - the perception that use of biomass is regressive in a modernizing industrial economy;
 - a belief that investors view the generation and sale of electricity as marginal to the core business of the industry.

- Absence of a clear mechanism on renewable energy technology development and applications despite the establishment of a broad regulatory framework.

- Lack of accessible and favourable financing schemes because,
 - in the absence of supporting policies and regulations it is difficult to gain funding support from financial institutions;
 - financing of projects based on renewable energy technologies is an unfamiliar investment and perceived as high risk.

- Uncertain financial viability unless satisfactory pricing arrangements can be
The BioGen Project

reached, producing power for the utility grid would not be seen as an attractive business venture;
• Lack of successful models to demonstrate viability as there were no precedents beyond the inefficient biomass fired CHP systems already operating in the palm oil and wood industries;

Operational uncertainties
• Biomass fuel supply relating to,
 – reliability of the volume and quality of EFBs;
 – seasonal nature of palm oil milling operations;
 – absence of standard contract procedures for the supply and pricing of EFBs.
• Minimum energy off-take that required,
 – to achieve an availability factor of 90% to baseload allowing for maintenance and forced outages.
• Efficiency of deployment of biomass based energy technology required,
 – review of current practices for incineration of excess biomass;
 – greater sophistication of operation and manpower skills, interconnection safety, synchronization devices and the more rigorous demands of grid electricity generation.
• Recovery of POME biogas for power generation lacked incentives although millers were aware of the technology and there were no restrictions on the release of biogas into the atmosphere.
• Purchase of electricity by the national utility company and other REPPA issues required the clarification and resolution.

Immediate objectives
1. To provide adequate, affordable, accessible and up-to-date information services, continuing education, and awareness improvement on the application of renewable energy resources to prospective RE developers, policy makers and technology suppliers.
2. To strengthen and formulate the policy and regulatory framework to encourage the widespread adoption of RE projects.
3. To encourage the implementation, the government and financial community will provide financial assistance to the development of sustainable RE financing.

4. To facilitate the effective demonstration of the techno-economic viability, design, development, financing and sustainable operation and maintenance of biomass-based and biogas-based, grid-connected power generation and cogeneration projects.

5. To establish the potential and requirements for the energy applications by providing sufficient support to the technology suppliers.

Planned outputs

The project was designed to address the barriers in the development and implementation of biomass-based, grid-connected power generation and CHP specifically in the Malaysian palm oil industry. To achieve this objective the project was organised into five components, each with its own set of outputs that comprised the blueprint to be followed by the participating agencies to achieve the objectives.

The major elements of each of the components proceeded concurrently from the launching of the project at the beginning of 2002, with the objective of completing the existing plans by early 2008. Whilst this account has emphasised some key barriers and operational uncertainties, many initiatives were being undertaken that supported and facilitated the immediate objectives of the project culminating in the contractual arrangements to set up the two full scale demonstration models.

Component 1 Biomass information services and awareness enhancement

Outputs

- Comprehensive biomass energy resource inventory
- Biomass energy technologies and technology application database
- Training courses on biomass energy technology
- Integrated information dissemination programme
- Biomass energy technology information exchange service
- Renewable energy (RE) consultancy service industry development
- Rating scheme for biomass based companies
THE BIOGEN PROJECT

Component 2 Biomass policy studies and institutional capacity building

Outputs
- Biomass policy document and analysis
- Biomass energy utilisation workshop series
- RE electricity generation policy
- RE electricity pricing
- Small RE project (SREP) strategy
- Clean Development Mechanism (CDM) implementation in RE project
- RE electricity policy implementation evaluation

Component 3 Financial assistance for renewable energy projects

Outputs
- Training for financial institutions on financing RE projects
- Establishment of RE fund
- Mechanism for the financing scheme
- Criteria for selecting fund applicants
- Arrangements for financial assistance for RE projects
- Evaluation of RE projects financing assistance programmes

Component 4 Demonstration schemes

Outputs
- Biomass based power generation and CHP demonstration programme
- Selection criteria for host demonstration companies
- Suitable project demonstration sites
- Baseline data for three dimensional sites
- Specific demonstration programme implementation requirements
- Installation and implementation of design/plans for first demonstration site
- Financial and procurement assistance arrangements for demonstration schemes

Component 5 Technology development

Outputs
- Assessment of other uses of biomass and biogas resources
- Evaluation of the energy utilization performance of palm oil mills
- Training for palm oil mill plant engineers and operators
- Financial assistance to local equipment manufacturers
- Assessment of capabilities of local steam and power generation equipment
- Training on high efficiency designs and production technologies

The project has undertaken studies on Biomass Resource Assessment and, based on the findings, the total potential for biomass and biogas from palm oil mill wastes was estimated, in 2005, to be approximately 2,500 MW. Microanalysis on eight selected palm oil mills was carried out in terms of energy utilisation and the potential for improving efficiency of current usage. The mills have also been assessed for the practical feasibility of feeding electricity from excess power generation into the national grid.
Full scale model

A full scale model (FSM) utilizing both biomass and biogas resources was planned as a major outcome of the Biogen project. This was seen as important because it would give a practical demonstration of the technology and processes being utilized and recommended in the project. During 2005, extensive planning occurred for the establishment of the first FSM, but some difficulties were experienced in gaining the requisite level of interest and support. (In attempting to identify suitable candidates for the first full scale demonstration model, similar issues arose to those that were making the industry at large reluctant to adopt CHP, namely: the relatively large scale of investment; a lack of financial depth to meet the equity requirements and an unattractive renewable energy tariff.)

Nevertheless, to facilitate the development of the first FSM, a number of major developments that had been ongoing since the beginning of the project were being brought to a conclusion. Notably, these included the finalizing of the Renewable Energy Power Purchase Agreement (REPPA), and the Renewable Energy Business Facility (REBF), both of which were essential for the contracting of an FSM operator.

In 2006, following a tendering process and evaluation of proposals submitted, instead of a single FSM, two companies were selected: MHES Asia Sdn Bhd to develop a biomass project as the first FSM; and FELDA Palm Industries Sdn Bhd (FPISB) for the biogas project as the second FSM. Schematic diagrams for typical biomass and biogas plants are represented in Figure 7 and 8.
EFBs as fuel. The plant will sell 10MW of electricity to TNB for 21 years at the agreed REPPA price of between RM0.17/kWh to RM0.21/kWh. The power plant is scheduled for completion by early 2008.

The FPISB biogas project is to be located in Serting Hilir palm oil mill, also in Bahau, Negeri Sembilan, with the objective of utilizing methane-rich POME for power generation. The plant will have a power generation capacity of 500 kW, with plans for expansion after the first few years of operation if agreed by the national utility. The project, still at the planning stage in 2007, is estimated to reduce emissions by the equivalent of 45,000 tonnes of CO₂ per year.

Key achievements

The finalization of the Renewable Energy Power Purchase Agreement (REPPA) pro forma

This is the official document to be used by transacting parties in processing loan applications. Through the facilitation and inputs by the Biogen project, this output has been made possible with the close coordination and cooperation of the Government of Malaysia through MEWC, PTM, ST, TNB, and other relevant agencies. The REPPA represents the preparedness for commercialisation of renewable energy power.

REPPA is the legal document on the selling of electricity by renewable energy project developers and the purchase of electricity by the national utility companies (TNB/SESB). The rights and obligations of both parties cover the commercial and technical aspects governing the project implementation applicable throughout the lifetime of the agreement.

The Biogen project team was instrumental in reviewing the provisions of the agreement, customized for biomass power plants, and negotiating terms with the GoM, banking institutions and private sector stakeholders. Final details of the agreement, relating mainly to tariff, were in process with the FSM participants in 2007.
Establishment of the Renewable Energy Business Facility (REBF)

In 2005, the Biogen project established the first financing scheme for RE projects. The Renewable Energy Business Facility (REBF) uses funds available from the UNDP/GEF, MESITA and BPMB, provided at 4% per annum for the FSM projects. The REBF paves the way for other funding mechanisms that will be administered through the facility.

Organization of the Biomass One-Stop Centre

The Biomass One-Stop Centre was established through the Biogen project in PTM. It provides services, including consultancy, for biomass utilization projects, information database, technical advisory, services, financing facilitation, and project identification.

Energy audits of selected palm oil mills

Eight mills were audited to assess their energy utilization and the possibility of improving current usage efficiency. These mills are also being assessed for connection to the grid for additional power supply from excess generation.

Different policy studies

These studies have been conducted in support of the government’s renewable energy programme. Their value lies in their contribution to modifying relevant laws, making agreements more workable, providing against force majeure, dealing with loss or shortfall of energy, and setting of performance targets.

Tariff negotiations

Power purchase price is negotiated between the utility and the RE developers. As such, the Biogen project team prepared and submitted a proposal to MEWC for a raised renewable energy tariff that would make biomass projects viable. The point at issue is that, to assist the SREP programme, GoM intervention is required to address the feed-in renewable energy tariff in Peninsular Malaysia. RM0.17cents/kWh is set as the benchmark figure for feed-in tariff which will subject to standard industry review. The position in Sabah, for the operation of TSH Bio-Energy cogeneration project, was less problematic as the existing tariff (of about RM0.21/kWh) is compared against the cost of diesel-powered generation.

Adoption of RE in mill operation syllabus

The project team worked with MPOB in identifying key information to be included in the syllabus for Diploma-level mill operation.

Biomass Resource Information System (BRIS)

A web-based interactive system is under its final stage and will be ready by end 2007. It will show an estimated amount of biomass available by most palm oil mills resource mapping, and the availability for power generation at any specified grid intake.
Biomass availability assessment
The Biogen project reported that the total potential for biomass and biogas mill wastes was indicated at 2,600 MW per annum in 2005. Detailed data are to be stored for easy access in the RE database being completed by the Biogen project.

Selection of host companies for the full scale models
The MHES Asia Biomass Power Plant, located in Bahau, Negeri Sembilan, was chosen as the first FSM, and will utilize EFBs as fuel for generating biomass based power. The FPISB was chosen to undertake the second FSM with the objective of utilising methane-rich POME for power generation. The selection process was developed and implemented by the Biogen project.

Workshops and promotional activities
More than 15 seminars and workshops were conducted by the Biogen project in support of the capacity building of various stakeholders and benefitted nearly 1,000 industry professionals.

Institutionalization of the renewable energy programme and organization
PTM was instrumental in the institutionalization of the RE programme. The necessary organizational support was provided by the Biogen project which was able to draw on the various outputs from the five components and provide the government with the required relevant inputs for current and future development.

Challenges
1. To assist the government in developing pragmatic approaches in tariff setting, by conducting appropriate follow-through activities.
2. To continue to develop alternative financing mechanisms such as CDM credits, grace period extensions, and loan guarantee coverage, customised to the particular requirements of palm oil mills and CHP.
3. To continue strengthening the network and organisational linkages among the stakeholders, particularly the members of the decision-making committees so that they can respond effectively, innovatively and in a timely fashion to the continuing and changing needs of all the target projects, especially the FSMs.

4. To develop, establish and sustain an effective monitoring and evaluation system for the pipeline of biomass and biogas projects contributing to achievement of the national renewable energy target, especially by providing support for post-Biogen renewable energy projects.

5. To enhance the design and fast-track the establishment of the biomass information database and exchange system through the Biomass One-Stop Centre facilitating decision making and business transactions, especially for such information as: fuel supply availability and pricing; financing mechanisms; technology supply and services; best practices; and lessons learnt.
LESSONS LEARNT

Stakeholder participation
Achieving a significant impact on policy requires consistency with the development aims of government; this was substantially achieved through broad, high-level stakeholders participation in the project design and throughout the stages of implementation.

Institutional focus
Having an established institutional focus in the PTM greatly expedited and helped sustain the project and its viability, and could be seen as setting a useful precedent for similar projects in the future.

Sustainability of renewable energy
Promoting the use of renewable energy is a long-term policy. Renewable energy, as demonstrated by the work of UNDP/GEF in other countries, is a cost effective way of reducing emissions of greenhouse gases, but needs an achievement horizon of decades. Sustainability of this work and the impact achieved largely depend on the government’s willingness to put substantial resources behind such efforts on a continuing basis so that progress achieved so far is not squandered. It also requires support from civil society and the public. For similar projects, it is desirable that they should be predicated on the reasonable expectation of substantial government funding to sustain momentum.

Reduce fossil fuel subsidies
Achieving more efficient use of renewable energy is challenging because of the relatively low buy-back tariff and high risk. The practice in Malaysia of substantially subsidizing fossil fuel does not encourage energy players to develop new renewable energy plants and eliminate wastages.

Right formulation of energy price
Fixing a suitable feed-in tariff depends heavily on parameters such as price of fuel supply, choice of technologies and materials, and other associated costs, including legal expenses. All relevant factors must be taken into account and stakeholders need to be consulted in the course of determining the tariff, to ensure the right formulation is achieved.
Suitable fiscal and financial mechanism
Adopting renewable energy technologies and processes is largely dependent on the private sector, and it is therefore crucial that appropriate fiscal and financial incentives are formulated to encourage the implementation of these measures and provide clear linkages to monetary benefits.

Efficient deployment of feedstock
Ensuring security of feedstock supply is important and requires appropriate policy intervention. Also, as biomass sources are mostly organic, it is imperative that feedstock is deployed as quickly and efficiently as possible to prevent degradation of quality. The use of densified feedstock to overcome degradation and for ease of transport is highly encouraged.

Level playing field
The use of conventional Power Purchase Agreement as the basis for achieving an equitable Renewable Energy Power Purchase Agreement (REPPA) is inappropriate since the systems utilize different types of feedstock and technologies. Unlike fossil fuels, renewable energy should command a premium price as it has the overarching objective of preserving the environment and recycling waste.

The needs of continued awareness raising
Although power generation is not new to the palm oil millers, the continuous awareness programme is needed to ensure that the waste recycling will remain relevant despite the fast pace of technology development. Furthermore, policy makers and stakeholders require updated and genuine information in determining the correct mechanism to be placed.
SOURCES OF INFORMATION

Publications

Internet

www.earthscan.co.uk

www.iea.org

www.iea.org

www.iea.org

www.iea.org

Lacrosse, Ludovic and Sanjeeb Kumar Shakya, Clean and Efficient Biomass Cogeneration Technology in ASEAN.
www.cogen3.net

www.forum-ue.de/bioenergy

The Roundtable on Sustainable Palm Oil (RSPO).
www.rspo.org

www.rspo.org/resource_centre

www.fao.org

Earlier Reports in Series

Copies of this current report, as well as earlier reports in this series, can be obtained by writing to:

Asfaazam Kasbani
Programme Manager (Energy & Environment)
Wisma UN, Block,
Kompleks Pejabat Damansara,
Jalan Dungun, Damansara Heights,
50490 Kuala Lumpur, Malaysia

Email: asfaazam.kasbani@undp.org